Приближённое вычисление площадей.
Цель-научиться находить приближённое значение площади с помощью палетки.
Сценарий урока по предмету «Математика»
МОУ СОШ № 1 г. Сыктывкара. 4 класс
Программа «Школа 2000…»
Учитель Максина Надежда Николаевна
Тема: Приближённое вычисление площадей.
Тип урока: урок открытия нового знания.
Цель: к концу урока учащиеся научатся находить приближённое значение площади с помощью палетки.
Задачи:
Предметные:
-формирование умения вычислять приближённое значение площадей;
-формирование умения строить алгоритм действий и пользоваться им при нахождении приближённого значения площади;
-закрепление умения деления на двухзначное и трёхзначное число;
-закрепление умения деления на 10, 100, 1000;
-закрепление умения находить границы площади.
Метапредметные:
Познавательные:
-развитие умения пользоваться палеткой.
Регулятивные:
-развитие умения ставить цель;
-развитие умения оценивать свою деятельность на уроке;
-развитие умения контролировать свою деятельность (самопроверка задания выполненного самостоятельно);
Коммуникативные:
-развитие умения слушать и вступать в диалог;
-развитие умения с достаточной полнотой и точностью проговаривать свои действия.
Оборудование:
1.Учебник.
2.Карточки с примерами вида 15728:1000, 56000:70 и т.п., «ворота», «мячи».
3.Карточка с формулой вычисления приближённого значения площади.
4.Шаблоны - вазы.
5.Листы без клеточек.
Оформление доски:
14.10.
Классная работа.
формула
Ход урока:
Этапы урока |
Деятельность учителя |
Деятельность учащихся |
1.Самоопределение к деятельности. |
- Каких успехов вы добились на прошлых уроках? -Хотите узнать больше? Что для этого нужно? -Сегодня мы с вами узнаем что-то новое. Желаю всем успехов на уроке! |
-Научились находить границы площади. -Нужно узнавать новое. |
2.Актуализация знаний и мотивация. |
-Начнём урок с игры под названием «Математический футбол». Для этого я вас разделю на две команды. Каким правилам будете придерживаться, работая в группах? -Верно. Молодцы. Теперь слушаем задание. Каждой команде я раздаю по два набора карточек с примерами. Первый набор карточек – для вас самих, чтобы вы могли решить примеры и записать ответы. А второй набор карточек с такими же примерами, что и первый набор для команды-соперника. Приступаем к работе. -Закончили. Посмотрите, у меня на доске прикреплены ворота первой и второй команды. В руках у меня мячи, которые вы можете забить друг другу. Итак, сначала первая команда задаёт задание второй команде, которая в свою очередь даёт ответ. -Первая команда проверяет. Верный ли ответ поступил? -Значит гол не забит. -Следующий пример? … -Ребята, посмотрите на ваши ворота!? Они пусты. Какой вывод можно сделать? -Молодцы! Похлопайте сами себе. -За отличную игру я вручаю вам такие «вазочки». -Сейчас откройте тетради и запишите сегодняшнее число, классная работа. -Вам такое задание: обвести вазы и найти границы её площади, если одна клеточка – единица мерки.
е -Как записать границы площади? -Итак, как найти нижнюю границу? -Верхнюю границу? -Запишите полученное неравенство на доске. *Один ученик записывает на доске: 6<S<16. -Мы нашли границы площади вазы, то есть сделали оценку площади. А сейчас найдите у себя на партах вот такие листы. Обведите вазы на них и найдите границы площади. -Что вы заметили? -Каким образом в этом случае находить границы площади? |
-Нужно работать вместе, сообща. -Всех выслушивать, не перебивать. -В случае несогласия, объяснить своё несогласие. -Да. -Что мы правильно решили примеры, не допустили ошибки, были очень внимательны. -В виде неравенства. -Подсчитать количество целых клеток. -Подсчитать количество нецелых клеток и прибавить их к количеству целых клеток. -Здесь нет клеток. |
3.Постановка учебной задачи. |
-Итак, у нас возникла проблема. Почему она здесь возникла? -Какую цель поставим? -Ребята, существует специальный инструмент, который сэкономит время. Это палетка, в переводе с французского языка означает плёнка. Посмотрите на неё. Палетка - это калька, разбитая на квадратные сантиметры. Её я изготовила сама, и мы сегодня на уроке труда будем её делать. - Как вы думаете, можем ли мы найти точное значение площади фигуры с помощью неё? -А какое тогда значение? -Совершенно верно, примерное или приближённое. Исходя из сказанного, уточните тему и цель нашего урока. |
-Не умеем находить границы площади без клеточек. -Выяснить другой способ вычисления площади. -Нет. -Примерное. - Научиться находить приближённое значение площади. |
4. «Открытие» детьми нового знания. |
-Как же найти приближённое значение площади фигуры с помощью палетки? Что будем делать с палеткой? Как будем действовать? -Ещё есть какие предположения? -Из чего состоят ваши предположения? -Правильно из определенной последовательности, поэтому нам нужен алгоритм действий для приближённого вычисления площади. -Давайте проверим ваши предположения по алгоритму, данному нам в учебнике на С.53. -Прочитаем алгоритм по шагам, а я попутно буду показывать на доске. Посмотрите, у меня есть фигура, нарисованная на доске и палетка. -Что мы делаем сначала? -Итак, я накладываю палетку. -Далее? -Подсчитываю и записываю: а=9. -Следующий шаг? -По-другому - считаю количество нецелых клеток и записываю: b=11. -И что у нас осталось? -Смотрим. У нас количество нецелых клеток получилось чётное число? -Значит, например, я увеличиваю число на 1 и получается, что b=11+1=12. -Считаю площадь по формуле и записываю: S≈9+12:2≈13 кв.ед. Обратите внимание, так как мы находим приближённое значение, мы записываем это с помощью приближённого знака равенства «≈». -Чьё предположение было верным? |
-Сначала накладываем палетку на фигуру, площадь которой надо найти. Потом подсчитаем количество целых квадратиков и прибавим их с количеством нецелых квадратиков. -Из шагов. -Наложить палетку на фигуру. -Сосчитать число а целых клеток внутри фигуры. -Сосчитать число b клеток, входящих в фигуру частично. -Сосчитать приближённое значение площади: S≈a+b:2 (если число b нечётно, то увеличить или уменьшить его на 1). -Нечетное. |
5.Первичное закрепление. |
-Пользуясь данным алгоритмом, решим вместе задание №1 под буквами а и б. -Что заметили? *У доски с проговариванием. |
-Здесь первый шаг уже выполнен. На фигуры уже наложены палетки. |
6.Самостоятельная работа с самопроверкой. |
-Теперь попробуем выполнить самостоятельно под буквами в и г. -Проверьте сами своё решение. (На доске готовое решение задания). -Кто справился? Где допустили ошибки? -У кого не получилось, не расстраивайтесь, мы только учимся. У вас все получится. |
|
7.Включение в систему знаний и повторение. |
-Выполним задание №3. Прочитайте задание. -Итак, в одном задании нам нужно вспомнить то, что уже знаем и применить новое знание, полученное сегодня. -Приступаем к работе. -Проверим, что получилось. |
-Начерти циркулем окружность радиусом 4 см. Найди границы площади и вычисли приближённое значение площади получившегося круга с помощью палетки. |
8.Рефлексия. |
-Достигли ли мы поставленной цели? -Чему научились? -В чём испытывали затруднения? -Над чем необходимо поработать? -Оцените свою работу на уроке. |
|
Сценарий урока по предмету «Математика»
МОУ СОШ № 1 г. Сыктывкара. 4 класс
Программа «Школа 2000…»
Учитель Максина Надежда Николаевна
Тема: Приближённое вычисление площадей.
Тип урока: урок открытия нового знания.
Цель: к концу урока учащиеся научатся находить приближённое значение площади с помощью палетки.
Задачи:
Предметные:
-формирование умения вычислять приближённое значение площадей;
-формирование умения строить алгоритм действий и пользоваться им при нахождении приближённого значения площади;
-закрепление умения деления на двухзначное и трёхзначное число;
-закрепление умения деления на 10, 100, 1000;
-закрепление умения находить границы площади.
Метапредметные:
Познавательные:
-развитие умения пользоваться палеткой.
Регулятивные:
-развитие умения ставить цель;
-развитие умения оценивать свою деятельность на уроке;
-развитие умения контролировать свою деятельность (самопроверка задания выполненного самостоятельно);
Коммуникативные:
-развитие умения слушать и вступать в диалог;
-развитие умения с достаточной полнотой и точностью проговаривать свои действия.
Оборудование:
1.Учебник.
2.Карточки с примерами вида 15728:1000, 56000:70 и т.п., «ворота», «мячи».
3.Карточка с формулой вычисления приближённого значения площади.
4.Шаблоны - вазы.
5.Листы без клеточек.
Оформление доски:
14.10.
Классная работа.
формула
Ход урока:
Этапы урока |
Деятельность учителя |
Деятельность учащихся |
1.Самоопределение к деятельности. |
- Каких успехов вы добились на прошлых уроках? -Хотите узнать больше? Что для этого нужно? -Сегодня мы с вами узнаем что-то новое. Желаю всем успехов на уроке! |
-Научились находить границы площади. -Нужно узнавать новое. |
2.Актуализация знаний и мотивация. |
-Начнём урок с игры под названием «Математический футбол». Для этого я вас разделю на две команды. Каким правилам будете придерживаться, работая в группах? -Верно. Молодцы. Теперь слушаем задание. Каждой команде я раздаю по два набора карточек с примерами. Первый набор карточек – для вас самих, чтобы вы могли решить примеры и записать ответы. А второй набор карточек с такими же примерами, что и первый набор для команды-соперника. Приступаем к работе. -Закончили. Посмотрите, у меня на доске прикреплены ворота первой и второй команды. В руках у меня мячи, которые вы можете забить друг другу. Итак, сначала первая команда задаёт задание второй команде, которая в свою очередь даёт ответ. -Первая команда проверяет. Верный ли ответ поступил? -Значит гол не забит. -Следующий пример? … -Ребята, посмотрите на ваши ворота!? Они пусты. Какой вывод можно сделать? -Молодцы! Похлопайте сами себе. -За отличную игру я вручаю вам такие «вазочки». -Сейчас откройте тетради и запишите сегодняшнее число, классная работа. -Вам такое задание: обвести вазы и найти границы её площади, если одна клеточка – единица мерки.
е -Как записать границы площади? -Итак, как найти нижнюю границу? -Верхнюю границу? -Запишите полученное неравенство на доске. *Один ученик записывает на доске: 6<S<16. -Мы нашли границы площади вазы, то есть сделали оценку площади. А сейчас найдите у себя на партах вот такие листы. Обведите вазы на них и найдите границы площади. -Что вы заметили? -Каким образом в этом случае находить границы площади? |
-Нужно работать вместе, сообща. -Всех выслушивать, не перебивать. -В случае несогласия, объяснить своё несогласие. -Да. -Что мы правильно решили примеры, не допустили ошибки, были очень внимательны. -В виде неравенства. -Подсчитать количество целых клеток. -Подсчитать количество нецелых клеток и прибавить их к количеству целых клеток. -Здесь нет клеток. |
3.Постановка учебной задачи. |
-Итак, у нас возникла проблема. Почему она здесь возникла? -Какую цель поставим? -Ребята, существует специальный инструмент, который сэкономит время. Это палетка, в переводе с французского языка означает плёнка. Посмотрите на неё. Палетка - это калька, разбитая на квадратные сантиметры. Её я изготовила сама, и мы сегодня на уроке труда будем её делать. - Как вы думаете, можем ли мы найти точное значение площади фигуры с помощью неё? -А какое тогда значение? -Совершенно верно, примерное или приближённое. Исходя из сказанного, уточните тему и цель нашего урока. |
-Не умеем находить границы площади без клеточек. -Выяснить другой способ вычисления площади. -Нет. -Примерное. - Научиться находить приближённое значение площади. |
4. «Открытие» детьми нового знания. |
-Как же найти приближённое значение площади фигуры с помощью палетки? Что будем делать с палеткой? Как будем действовать? -Ещё есть какие предположения? -Из чего состоят ваши предположения? -Правильно из определенной последовательности, поэтому нам нужен алгоритм действий для приближённого вычисления площади. -Давайте проверим ваши предположения по алгоритму, данному нам в учебнике на С.53. -Прочитаем алгоритм по шагам, а я попутно буду показывать на доске. Посмотрите, у меня есть фигура, нарисованная на доске и палетка. -Что мы делаем сначала? -Итак, я накладываю палетку. -Далее? -Подсчитываю и записываю: а=9. -Следующий шаг? -По-другому - считаю количество нецелых клеток и записываю: b=11. -И что у нас осталось? -Смотрим. У нас количество нецелых клеток получилось чётное число? -Значит, например, я увеличиваю число на 1 и получается, что b=11+1=12. -Считаю площадь по формуле и записываю: S≈9+12:2≈13 кв.ед. Обратите внимание, так как мы находим приближённое значение, мы записываем это с помощью приближённого знака равенства «≈». -Чьё предположение было верным? |
-Сначала накладываем палетку на фигуру, площадь которой надо найти. Потом подсчитаем количество целых квадратиков и прибавим их с количеством нецелых квадратиков. -Из шагов. -Наложить палетку на фигуру. -Сосчитать число а целых клеток внутри фигуры. -Сосчитать число b клеток, входящих в фигуру частично. -Сосчитать приближённое значение площади: S≈a+b:2 (если число b нечётно, то увеличить или уменьшить его на 1). -Нечетное. |
5.Первичное закрепление. |
-Пользуясь данным алгоритмом, решим вместе задание №1 под буквами а и б. -Что заметили? *У доски с проговариванием. |
-Здесь первый шаг уже выполнен. На фигуры уже наложены палетки. |
6.Самостоятельная работа с самопроверкой. |
-Теперь попробуем выполнить самостоятельно под буквами в и г. -Проверьте сами своё решение. (На доске готовое решение задания). -Кто справился? Где допустили ошибки? -У кого не получилось, не расстраивайтесь, мы только учимся. У вас все получится. |
|
7.Включение в систему знаний и повторение. |
-Выполним задание №3. Прочитайте задание. -Итак, в одном задании нам нужно вспомнить то, что уже знаем и применить новое знание, полученное сегодня. -Приступаем к работе. -Проверим, что получилось. |
-Начерти циркулем окружность радиусом 4 см. Найди границы площади и вычисли приближённое значение площади получившегося круга с помощью палетки. |
8.Рефлексия. |
-Достигли ли мы поставленной цели? -Чему научились? -В чём испытывали затруднения? -Над чем необходимо поработать? -Оцените свою работу на уроке. -Запишите д.з.: С.56, №10 (а). |
|
- Международный вебинар «Избыточное употребление пищи (переедание): физиологические, психологические и социальные причины»
- Вебинар «Чистоговорки со зрительной опорой для детей дошкольного возраста, или Учимся выговаривать все звуки»
- Вебинар «Нарушение обработки сенсорной интеграции (НОСИ) у детей: игровая терапия, направленная на улучшение адаптивного ответа на сенсорные раздражители и сокращение поведенческих трудностей»
- Вебинар «Йога как инновационная оздоровительная технология для детей: польза и противопоказания»
- Современные тенденции развития шахматного образования в РФ. Научные идеи и концепции обучения шахматной игре
- Вебинар «Формирование детского коллектива как основа позитивной социализации»