Рабочая образовательная программа по математике
Рабочая образовательная программа
по математике
5 класс
(II ступень образования)
уровень обучения – базовый
на 2014-2015 уч.год
Составила: Карачун Вера Валерьевна, учитель математики и информатики
п.Кутулик, 2014 г.
Пояснительная записка
Рабочая программа основного общего образования по математике для 5 класса составлена на основе Фундаментального ядра содержания общего образования и Требований к результатам освоения основной общеобразовательной программы основного общего образования, представленных в Федеральном государственном образовательном стандарте второго поколения. В них также учитываются основные идеи и положения Программы развития и формирования универсальных учебных действий для основного общего образования.
Сознательное овладение учащимися системой арифметических знаний и умений необходимо в повседневной жизни, для изучения смежных дисциплин и продолжения образования.
Практическая значимость школьного курса математики 5 класса обусловлена тем, что её объектом являются количественные отношения действительного мира. Математическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика является языком науки и техники. С её помощью моделируются и изучаются явления и процессы, происходящие в природе.
Арифметика является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественно - научного цикла. Развитие логического мышления учащихся при обучении математике в 5 классе, а в дальнейшем и в 6 классе, способствует усвоению предметов гуманитарного цикла. Практические умения и навыки арифметического характера необходимы для трудовой и профессиональной подготовки школьников.
Развитие у учащихся правильных представлений о сущности и происхождении арифметических абстракций, о соотношении реального и идеального, о характере отражения математической наукой явлений и процессов реального мира, о месте арифметики в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся, а также формированию качеств мышления, необходимых для адаптации в современном информационном обществе.
Требуя от учащихся умственных и волевых усилий, концентрации внимания, активности воображения, арифметика развивает нравственные черты личности (настойчивость, целеустремленность, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления) и умение аргументировано отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения. Активное использование и решение текстовых задач на всех этапах учебного процесса развивают творческие способности школьников.
Изучение математики в 5 классе, а в дальнейшем и в 6 классе, позволяет формировать умения и навыки умственного труда: планирование своей работы, поиск рациональных путей её выполнения, критическую оценку результатов. В процессе изучения математики школьники учатся излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобретают навыки чёткого, аккуратного и грамотного выполнения математических записей.
Важнейшей задачей школьного курса арифметики является развитие логического мышления учащихся. Сами объекты математических умозаключений и принятые в арифметике правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно раскрывают механизм логических построений и учат их применению. Показывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, арифметика вносит значительный вклад в эстетическое воспитание учащихся.
Общая характеристика курса математики в 5 классе
В курсе математики 5 класса можно выделить следующие основные содержательные линии: арифметика; элементы алгебры; вероятность и статистика; наглядная геометрия. Наряду с этим в содержание включены две дополнительные методологические темы: множества и математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся. Содержание каждой из этих тем разворачивается в содержательно-методическую линию, пронизывающую все основные содержательные линии. При этом первая линия - «Множества» - служит цели овладения учащимися некоторыми элементами универсального математического языка, вторая - «Математика в историческом развитии» - способствует созданию общекультурного, гуманитарного фона изучения курса.
Содержание линии «Арифметика» служит фундаментом для дальнейшего изучения учащимися математики и смежных дисциплин, способствует развитию не только вычислительных навыков, но и логического мышления, формированию умения пользоваться алгоритмами, способствует развитию умений планировать и осуществлять деятельность, направленную на решение задач, а также приобретению практических навыков, необходимых в повседневной жизни.
Содержание линии «Элементы алгебры» систематизирует знания о математическом языке, показывая применение букв для обозначения чисел и записи свойств арифметических действий, а также для нахождения неизвестных компонентов арифметических действий.
Содержание линии «Наглядная геометрия» способствует формированию у учащихся первичных представлений о геометрических абстракциях реального мира, закладывает основы формирования правильной геометрической речи, развивает образное мышление и пространственные представления.
Линия «Вероятность и статистика» - обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности - умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.
При изучении статистики и вероятности обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации, и закладываются основы вероятностного мышления.
Место курса «Математика» в учебном плане
Базисный учебный (образовательный) план на изучение математики в 5 классе основной школы отводит 5 часов в неделю, всего 170 уроков. Учебное время может быть увеличено до 6 часов в неделю за счёт вариативной части Базисного плана.
Ценностные ориентиры содержания учебного предмета
Математическое образование играет важную роль как в практической, так и в духовной жизни общества. Практическая сторона математического образования связана с формированием способов деятельности, духовная - с интеллектуальным развитием человека, формированием характера и общей культуры.
Практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения - от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять достаточно сложные расчеты, находить в справочниках нужные формулы и применять их, владеть практическими приемами геометрических измерений и построений, читать информацию, представленную в виду таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др.
Без базовой математической подготовки невозможно стать образованным современным человеком. В школе математика служит опорным предметом для изучения смежных дисциплин. В после школьной жизни реальной необходимостью в наши дни является непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И наконец, все больше специальностей, где необходим высокий уровень образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и др.). Таким образом, расширяется круг школьников, для которых математика становится значимым предметом.
Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике в формировании алгоритмического мышления и воспитании умений действовать по заданному алгоритму и конструировать новые. В ходе решения задач - основной учебной деятельности на уроках математики - развиваются творческая и прикладная стороны мышления.
Обучение математике дает возможность развивать у учащихся точную, экономную и информативную речь, умение отбирать наиболее подходящие языковые (в частности, символические, графические) средства.
Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методе математики, его отличия от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач.
Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.
История развития математического знания дает возможность пополнить запас историко-научных знаний школьников, сформировать у них представления о математике как части общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математической науки, с историей великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека.
Личностные, метапредметные и предметные результаты освоения содержания курса
Программа позволяет добиваться следующих результатов освоения образовательной программы основного общего образования.
Личностные:
у учащихся будут сформированы:
1) ответственное отношение к учению;
2) готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
3) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
4) начальные навыки адаптации в динамично изменяющемся мире;
5) экологическая культура: ценностное отношение к природному миру, готовность следовать нормам природоохранного, здоровьесберегающего поведения;
6) формирование способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
7) умение контролировать процесс и результат учебной математической деятельности;
у учащихся могут быть сформированы:
1) первоначальные представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;
2) коммуникативная компетентность в общении и сотрудничестве со сверстниками в образовательной, учебно-исследовательской, творческой и других видах деятельности;
3) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
4) креативность мышления, инициативы, находчивости, активности при решении арифметических задач.
Метапредметные:
регулятивные
учащиеся научатся:
1) формулировать и удерживать учебную задачу;
2) выбирать действия в соответствии с поставленной задачей и условиями её реализации;
3) планировать пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
4) предвидеть уровень усвоения знаний, его временных характеристик;
5) составлять план и последовательность действий;
6) осуществлять контроль по образцу и вносить необходимые коррективы;
7) адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;
8) сличать способ действия и его результат с заданным эталоном с целью обнаружения отклонений и отличий от эталона;
учащиеся получат возможность научиться:
1) определять последовательность промежуточных целей и соответствующих им действий с учётом конечного результата;
2) предвидеть возможности получения конкретного результата при решении задач;
3) осуществлять констатирующий и прогнозирующий контроль по результату и по способу действия;
4) выделять и формулировать то, что усвоено и что нужно усвоить, определять качество и уровень усвоения;
5) концентрировать волю для преодоления интеллектуальных затруднений и физических препятствий;
познавательные
учащиеся научатся:
1) самостоятельно выделять и формулировать познавательную цель;
2) использовать общие приёмы решения задач;
3) применять правила и пользоваться инструкциями и освоенными закономерностями;
4) осуществлять смысловое чтение;
5) создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения задач;
6) самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
7) понимать сущность алгоритмических предписаний и уметь действовать в соответствии с предложенным алгоритмом;
8) понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
9) находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
учащиеся получат возможность научиться:
1) устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;
2) формировать учебную и общепользовательскую компетентности в области использования информационно-коммуникационных технологий (ИКТ - компетентности);
3) видеть математическую задачу в других дисциплинах, в окружающей жизни;
4) выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
5) планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
6) выбирать наиболее рациональные и эффективные способы решения задач;
7) интерпретировать информации (структурировать, переводить сплошной текст в таблицу, презентовать полученную информацию, в том числе с помощью ИКТ);
8) оценивать информацию (критическая оценка, оценка достоверности);
9) устанавливать причинно-следственные связи, выстраивать рассуждения, обобщения;
коммуникативные
учащиеся научатся:
1) организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников;
2) взаимодействовать и находить общие способы работы; работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;
3) прогнозировать возникновение конфликтов при наличии разных точек зрения;
4) разрешать конфликты на основе учёта интересов и позиций всех участников;
5) координировать и принимать различные позиции во взаимодействии;
6) аргументировать свою позицию и координировать её с позициями партнёров в сотрудничестве при выработке общего решения в совместной деятельности.
Предметные:
учащиеся научатся:
1) работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), обосновывать суждения, проводить классификацию;
2) владеть базовым понятийным аппаратом: иметь представление о числе, дроби, об основных геометрических объектах (точка, прямая, ломаная, угол, многоугольник, многогранник, круг, окружность);
3) выполнять арифметические преобразования, применять их для решения учебных математических задач;
4) пользоваться изученными математическими формулами;
5) самостоятельно приобретать и применять знания в различных ситуациях для решения несложных практических задач, в том числе с использованием при необходимости справочных материалов, калькулятора и компьютера;
6) пользоваться предметным указателем энциклопедий и справочников для нахождения информации;
7) знать основные способы представления и анализа статистических данных; уметь решать задачи с помощью перебора возможных вариантов;
учащиеся получат возможность научиться:
1) выполнять арифметические преобразования выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;
2) применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов;
3) самостоятельно действовать в ситуации неопределённости при решении актуальных для них проблем, а также самостоятельно интерпретировать результаты решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.
Требования к уровню обученности учащихся.
Предметные УУД.
Знать/понимать
• как потребности практики привели математическую науку к необходимости расширения понятия числа;
• существо понятия алгоритма;
• как использовать математические формулы, уравнения; примеры их применения для решения математических и практических задач;
• каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждения о них, важных для практики; вероятностный характер многих закономерностей окружающего мира
уметь
• выполнять устно и письменно арифметические действия над числами, находить в несложных случаях значения степеней с целыми показателями и корней; находить значения числовых выражений;
• использовать буквы, для записи выражений и свойств арифметических действий, составления уравнений;
• переходить от одной формы записи чисел к другой;
• пользоваться основными единицами длины, массы, времени, скорости, площади, объёма; выражать более крупные единицы через более мелкие и наоборот;
• решать текстовые задачи, включая задачи, с дробями и процентами;
• строить простейшие геометрические фигуры;
• работать на калькуляторе;
• проводить несложные доказательства, получать простейшие следствия из известных ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
• решения несложных практических расчетных задач, в том числе с использованием при необходимости справочных материалов, калькулятора, компьютера;
• устной прикидки и оценки результата вычислений; проверки результата вычислений, с использованием различных приёмов;
• описания реальных ситуаций на язык геометрии;
• решение практических задач, связанных с нахождением геометрических величин
• построений геометрическими инструментами (линейка, угольник, циркуль, транспортир);
• выстраивания аргументации при доказательстве и диалоге;
• решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объёмов, времени, скорости;
Изучение математики в 5 классе, согласно требованиям Федерального государственного стандарта основного общего образования по математике, направлено на достижение целей:
в направлении личностного развития
-
формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
-
развитие логического и критического мышления; культуры речи, способности к умственному эксперименту;
-
воспитание качеств личности, способность принимать самостоятельные решения;
-
формирование качеств мышления;
-
развитие интереса к математическому творчеству и математических способностей;
в метапредметном направлении
-
развитие представлений о математике как форме описания и методе познания действительности;
-
формирование общих способов интеллектуальной деятельности, характерных для математики;
в предметном направлении
-
овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин.
Содержание обучения
№ п/п |
Раздел программы |
количество часов |
Из них |
|
контр. работ |
провер. работ |
|||
1 |
Натуральные числа и ноль. |
37 |
2 |
15 |
1.1 |
Вводный урок |
1 |
|
|
1.2 |
Ряд натуральных чисел. |
1 |
|
|
1.3 |
Десятичная система записи натуральных чисел. |
2 |
|
1 |
1.4 |
Сравнение натуральных чисел. |
2 |
|
1 |
1.5 |
Сложение. Законы сложения. |
2 |
|
1 |
1.6 |
Вычитание. |
2 |
|
1 |
1.7 |
Умножение. Законы умножения. |
2 |
|
1 |
1.8 |
Распределительный закон. |
3 |
|
1 |
1.9 |
Сложение и вычитание столбиком |
2 |
|
1 |
1.10 |
Контрольная работа №1. |
1 |
1 |
|
1.11 |
Умножение чисел столбиком. |
2 |
|
1 |
1.12 |
Степень с натуральным показателем. |
2 |
|
1 |
1.13 |
Деление нацело. |
3 |
|
1 |
1.14 |
Задачи «на части». |
3 |
|
1 |
1.15 |
Деление с остатком. |
2 |
|
1 |
1.16 |
Числовые выражения. |
2 |
|
1 |
1.17 |
Контрольная работа №2. |
1 |
1 |
|
1.18 |
Задачи на нахождение двух чисел по их сумме и разности. |
3 |
|
1 |
1.19 |
Вычисление с помощью калькулятора. |
1 |
|
1 |
2. |
Измерение величин |
28 |
2 |
13 |
2.1 |
Прямая. Луч. Отрезок. |
2 |
|
1 |
2.2 |
Измерение отрезков. |
2 |
|
1 |
2.3 |
Метрические единицы длины. |
2 |
|
1 |
2.4 |
Представление натуральных чисел на координатном луче. |
2 |
|
1 |
2.5 |
Контрольная работа №3. |
1 |
1 |
|
2.6 |
Задачи на движение . |
3 |
|
1 |
2.7 |
Окружность и круг. Сфера и нар. |
1 |
|
|
2.8 |
Углы. Измерение углов. |
2 |
|
2 |
2.9 |
Треугольник. |
2 |
|
1 |
2.10 |
Прямоугольник. Квадрат. |
2 |
|
1 |
2.11 |
Площадь прямоугольника. Единицы площади. |
2 |
|
1 |
2.12 |
Прямоугольный параллелепипед |
2 |
|
1 |
2.13 |
Объем прямоугольного параллелепипеда. Единицы объема. |
2 |
|
2 |
2.14 |
Контрольная работа №4. |
1 |
1 |
|
2.15 |
Единицы массы |
1 |
|
|
2.16 |
Единицы времени |
1 |
|
|
3 |
Делимость натуральных чисел |
16 |
1 |
7 |
3.1 |
Свойства делимости |
2 |
|
|
3.2 |
Признаки делимости |
2 |
|
1 |
3.3 |
Простые и составные числа. |
2 |
|
1 |
3.4 |
Делители натурального числа. |
3 |
|
2 |
3.5 |
Наибольший общий делитель |
3 |
|
1 |
3.6 |
Наименьшее общее кратное |
3 |
|
2 |
3.7 |
Контрольная работа №5 |
1 |
1 |
|
4. |
Обыкновенные дроби |
61 |
2 |
20 |
4.1 |
Доли и дроби (вводный урок) |
1* |
|
|
4.2 |
Понятие дроби. |
1 |
|
|
4.3 |
Равенство дробей. |
3 |
|
1 |
4.4 |
Нахождение части числа и числа по его части |
4 |
|
1 |
4.5 |
Приведение дробей к общему знаменателю. |
4 |
|
2 |
4.6 |
Сравнение дробей |
3 |
|
1 |
4.7 |
Сложение дробей |
3 |
|
1 |
4.8 |
Законы сложения |
3 |
|
1 |
4.9 |
Вычитание дробей. |
3 |
|
1 |
4.10 |
Контрольная работа № 6 |
1 |
1 |
|
4.11 |
Умножение дробей |
3 |
|
1 |
4.12 |
Законы умножения. |
3 |
|
1 |
4.13 |
Деление дробей |
4 |
|
1 |
4.14 |
Задачи на совместную работу |
3 |
|
1 |
4.15 |
Понятие смешанной дроби. |
3 |
|
1 |
4.16 |
Сложение смешанных дробей |
3 |
|
1 |
4.17 |
Вычитание смешанных дробей. |
3 |
|
1 |
4.18 |
Умножение и деление смешанных дробей. |
5 |
|
2 |
4.19 |
Контрольная работа № 7 |
1 |
1 |
|
4.20 |
Площадь прямоугольника. Объем прямоугольного параллелепипеда. |
2 |
|
1 |
4.21 |
Представление дроби на координатном луче. |
3 |
|
1 |
4.23 |
Задачи на движение по реке |
2 |
|
1 |
5. |
Теория множеств и логика. |
15 |
- |
5 |
5.1 |
Понятие множества. Подмножество. |
2 |
|
1 |
5.2 |
Разбиение множеств на подмножества. |
1 |
|
|
5.3 |
Операции над множествами (объединение, пересечение, разность, дополнение). |
3 |
|
1 |
5.4 |
Диаграммы Эйлера-Венна. |
2 |
|
1 |
5.6 |
Конечные и бесконечные множества |
1 |
|
|
5.7 |
Высказывания. |
1 |
|
1 |
5.8 |
Операции над высказываниями. |
3 |
|
1 |
5.8 |
Истинные и ложные высказывания. |
2 |
|
|
6. |
Итоговое повторение курса математики 5 класса. |
13 |
1 |
4 |
6.1 |
Повторение «Натуральные числа» |
3 |
|
1 |
6.2 |
Повторение «Измерение величин» |
3 |
|
1 |
6.3 |
Повторение «Делимость натуральных чисел» |
3 |
|
1 |
6.4 |
Повторение «Обыкновенные дроби». |
3 |
|
1 |
6.5 |
Итоговая контрольная работа №8 |
1 |
1 |
|
|
Итого |
170 |
8 |
64 |
Организация учебного процесса
При организации учебного процесса необходимо обращать внимание на такую психологическую особенность возраста 5-ти пятиклассников, как избирательность внимания. Дети легко откликаются на необычные, захватывающие уроки и внеклассные дела, но быстрая переключаемость внимания не даёт им возможности сосредоточиться долго на одном и том же деле. Однако если учитель будет создавать нестандартные ситуации, ребята будут заниматься с удовольствием и длительное время.
Дети в этом возрасте склонны к спорам и возражениям, особенностью их мышления является его критичность. У ребят появляется своё мнение, которое они стараются демонстрировать как можно чаще, заявляя о себе.
Этот возраст благоприятен для творческого развития. Учащимся нравится решать проблемные ситуации, находить сходства и различия, определять причину и следствие, самому решать проблему, участвовать в дискуссии, отстаивать и доказывать сваю правоту.
Соответственно действующему в ОУ учебному плану рабочая программа предусматривает следующий вариант организации процесса обучения в 5-х классах: базовый уровень обучения в объеме 170 часов (в неделю - 5 часов), из них для проведения: контрольных работ - 8 учебных часов, самостоятельных работ - 20 учебных часов, исследовательской деятельности - 5 учебных часов.
С учетом уровневой специфики 5 класса выстроено тематическое планирование: система учебных занятий (уроков), спроектированы цели, задачи, ожидаемые результаты обучения (планируемые результаты), что представлено далее. Планируется в преподавании предмета использование следующих педагогических технологий:
-
технологии личностно ориентированного обучения;
-
технологии полного усвоения;
-
технологии обучения на основе решения задач;
-
технологии обучения на основе схематичных и знаковых моделей;
-
технологии проблемного обучения.
В течение года возможны коррективы рабочей программы, связанные с объективными причинами.
Реализация рабочей программы обеспечивает освоение общеучебных умений и компетенций в рамках информационно-коммуникативной деятельности:
-
создание условий для умения логически обосновывать суждения, выдвигать гипотезы и понимать необходимость их проверки, ясно, точно и грамотно выражать свои мысли в устной и письменной речи;
-
формирование умения использовать различные языки математики, свободно переходить с языка на язык для иллюстрации, интерпретации, аргументации и доказательства, интегрирования в личный опыт новой, в том числе самостоятельно полученной, информации;
-
создание условий для плодотворного участия в работе в группе; развития умения самостоятельно и мотивированно организовывать свою деятельность, использовать приобретенные знания и умения в практической деятельности и повседневной жизни для исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств тел; вычисления площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.
На уроках учащиеся могут более уверенно овладеть монологической и диалогической речью, умением вступать в речевое общение, участвовать в диалоге (понимать точку зрения собеседника, признавать право на иное мнение), приводить примеры, подбирать аргументы, перефразировать мысль (объяснять иными словами), формулировать выводы. Для решения познавательных и коммуникативных задач учащимся предлагается использовать различные источники информации, включая энциклопедии, словари, интернет-ресурсы и другие базы данных, в соответствии с коммуникативной задачей, сферой и ситуацией общения осознанно выбирать выразительные средства языка и знаковые системы (текст, таблица, схема, аудиовизуальный ряд и др.).
Акцентированное внимание к продуктивным формам учебной деятельности предполагает актуализацию информационной компетентности учащихся: формирование простейших навыков работы с источниками, материалами.
Большую значимость образования сохраняет информационно-коммуникативная деятельность учащихся, в рамках которой развиваются умения и навыки поиска нужной информации по заданной теме в источниках различного типа, извлечения необходимой информации из источников, созданных в различных знаковых системах (текст, таблица, график, диаграмма, аудиовизуальный ряд и др.), перевода информации из одной знаковой системы в другую (из текста в таблицу, из аудиовизуального ряда в текст и др.), выбора знаковых систем адекватно познавательной и коммуникативной ситуации, отделения основной информации от второстепенной, критического оценивания достоверности полученной информации, передачи содержания информации адекватно поставленной цели (сжато, полно, выборочно). Учащиеся должны уметь развернуто обосновывать суждения, давать определения, приводить доказательства (в том числе от противного), объяснять изученные положения на самостоятельно подобранных конкретных примерах, владеть основными видами публичных выступлений (высказывания, монолог, дискуссия, полемика), следовать этическим нормам и правилам ведения диалога, диспута. Предполагается уверенное использование учащимися мультимедийных ресурсов и компьютерных технологий для обработки, передачи, систематизации информации, создания баз данных, презентации результатов познавательной и практической деятельности.
Стандарт ориентирован на воспитание школьника-гражданина и патриота России, развитие духовно-нравственного мира школьника, его национального самосознания. Эти положения нашли отражение в содержании уроков. В процессе обучения должно быть сформировано умение формулировать свои мировоззренческие взгляды и на этой основе - воспитание гражданственности и патриотизма.
Рабочая программа предусматривает следующие варианты дидактико-технологического обеспечения учебного процесса: наглядные пособия для курса математики, модели геометрических тел, таблицы, чертёжные принадлежности и инструменты; для информационно-компьютерной поддержки учебного процесса используются: компьютер, сканер, интерактивная доска, презентации, проекты учащихся и учителей; программно-педагогические средства, а также рабочая программа, справочная литература, учебники, разноуровневые тесты, тексты самостоятельных и контрольных работ, задания для проектной деятельности.
Критерии оценок по математике
Оценка устных ответов учащихся
Ответ оценивается отметкой «5», если ученик:
-
полно раскрыл содержание материала в объеме, предусмотренном программой и учебником, изложил материал грамотным языком в определенной логической последовательности, точно используя математическую терминологию и символику;
-
правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
-
показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;
-
продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при отработке умений и навыков;
-
отвечал самостоятельно без наводящих вопросов учителя. Возможны одна - две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.
Ответ оценивается отметкой «4», если
он удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:
-
в изложении допущены небольшие пробелы, не исказившие математическое содержание ответа;
-
допущены один – два недочета при освещении основного содержания ответа, исправленные по замечанию учителя;
-
допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные по замечанию учителя.
Отметка «3» ставится в следующих случаях:
-
неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала (определенные «Требованиями к математической подготовке учащихся»);
-
имелись затруднения или допущены ошибки в определении понятий, использо-вании математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
-
ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
-
при знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.
Отметка «2» ставится в следующих случаях:
-
не раскрыто основное содержание учебного материала;
-
обнаружено незнание или непонимание учеником большей или наиболее важной части учебного материала;
-
допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
Отметка «1» ставится, если:
-
ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изучаемому материалу.
Оценка письменных работ учащихся
Отметка «5» ставится, если:
-
работа выполнена полностью;
-
в логических рассуждениях и обосновании решения нет пробелов и ошибок;
-
в решении нет математических ошибок (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания учебного материала).
Отметка «4» ставится, если:
-
работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
-
допущена одна ошибка или два-три недочета в выкладках, рисунках, чертежах или графиках (если эти виды работы не являлись специальным объектом проверки).
Отметка «3» ставится, если:
-
допущены более одной ошибки или более двух-трех недочетов в выкладках, чертежах или графиках, но учащийся владеет обязательными умениями по проверяемой теме.
Отметка «2» ставится, если:
-
допущены существенные ошибки, показавшие, что учащийся не владеет обязательными умениями по данной теме в полной мере.
Отметка «1» ставится, если:
-
работа показала полное отсутствие у учащегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.
Критерии ошибок
К грубым ошибкам относятся ошибки, которые обнаруживают незнание учащимися формул, правил, основных свойств, теорем и неумение их применять; незнание приемов решения задач, рассматриваемых в учебниках, а также вычислительные ошибки, если они не являются опиской;
К не грубым ошибкам относятся: потеря корня или сохранение в ответе постороннего корня; отбрасывание без объяснений одного из них и равнозначные им;
К недочетам относятся: нерациональное решение, описки, недостаточность или отсутствие пояснений, обоснований в решениях
Календарно – тематическое планирование
Представлено в приложении
Литература
Федеральный государственный образовательный стандарт ООО
Примерные программы по математике федерального базисного учебного плана
Учебно-методическая литература
-
«Математика 5». Учебник для 5 класса общеобразовательных учреждений. /С.М.Никольский, М.К.Потапов, Н.Н.Решетников, А.В.Шевкин – Изд. 5-е. – М.: Просвещение, 2007, и последующие издания
-
«Математика 5». Учебник для 6 класса общеобразовательных учреждений. /С.М.Никольский, М.К.Потапов, Н.Н.Решетников, А.В.Шевкин – Изд. 5-е. – М.: Просвещение, 2007,
-
Потапов М.К., Шевкин А.В.Дидактические материалы по математике для 5 класса. – М.: Просвещение, - 4-е изд. 2008.
-
Потапов М.К., Шевкин А.В.Дидактические материалы по математике для 6 класса. – М.: Просвещение, - 4-е изд. 2008.
-
Потапов М.К., Шевкин А.В.Рабочая тетрадь по математике для 5 класса. – М.: Просвещение, - 3-е изд. 2007.
-
Потапов М.К., Шевкин А.В.Рабочая тетрадь по математике для 6 класса. – М.: Просвещение, - 3-е изд. 2007.
-
Жохов В.И, Митяева И.М. Математические диктанты 5 класс – М.: Мнемозима,- 2-е изд. 2003.
-
Жохов В.И. Математические диктанты 6 класс – М.: Росмэн, 2003.
-
Арутюнян Е.Б., Волоч М.Б., Глазков Ю.А., Левитас Г.Г. Математические диктанты для 5 – 9 классов – М.: Просвещение, 1991.
-
Ершова А.П.,.Голобородько В.В Самостоятельные и контрольные работы по математике для 5 класса.- М.: «Импекса», 2003.
-
Ершова А.П., Голобородько В.В.Самостоятельные и контрольные работы по математике для 6 класса.- М.: «Импекса», - 4-е изд., испр. 2006.
-
Тульчинская Е.Е Математика 5 класс. Блицопрос. Пособие для учащихся общеобразовательных учреждений.- М.: Мнемозина, 2007.
-
Тульчинская Е.Е Математика 6 класс. Блицопрос. Пособие для учащихся общеобразовательных учреждений.- М.: Мнемозина, 2007.
-
Шклярова Т.В. Математика. Сборник упражнений. 5 класс.- М.: Грамотей, 2006.
-
Шклярова Т.В. Математика. Сборник упражнений. 6 класс.- М.: Грамотей, 2006.
-
Баранова И.В., Борчугова З.Г., Стефанова Н.Л. Задачи по математике для 5-6 классов. – М.: АСТ-Астрель, 2001.
-
Шарыгин И.Ф., Шевкин А.В. Задачи на смекалку. Учебное пособие для 5-6 классов общеобразовательных учреждений. – М.: Просвещение, - 7-е изд., 2003.
-
Спивак А.В Тысяча и одна задача по математике. Книга для учащихся 5-7 классов. – М.: Просвещение,- 2-е изд., 2005.
-
Фарков А.В. Математические олимпиады. 5-6 классы: учебно-методическое пособие для учителей математики общеобразовательных школ. – М.: Экзамен, - 3-е изд., 2008.
-
Юрченко Е.В., Юрченко Е.В. математика. Тесты. 5-6 классы: Учебно-методическое пособие. – 2-е изд. – М.: Дрофа, 1998.
-
Алтынов П.И. Контрольные и проверочные работы по математике. 5-6 классы. : Методическое пособие. – 2-е изд. –М.: Дрофа, 1998.
-
Смирнова Е.С. Методическая разработка курса наглядной геометрии: 5 класс: Книга для учителя. – М.: Просвещение, 1999.
-
Известова Р. Рубежный контроль по математике. 5-9 классы – М.: Издательский дом «Первое сентября».
-
Росошек С.К. Тесты по математике для учащихся 5-9-х классов, обучающихся по программе МПИ – Томск: изд – во Том. Ун-та, 1997.
-
Депман И.Я., Виленкин Н.Я. За страницами учебника математики: Пособие лоя учащихся 5-6 классов средней школы – М.: Просвещение,!989.
Электронные учебные пособия
Интерактивная математика. 5-9 класс. Электронное учебное пособие для основной школы. М., ООО «Дрофа», ООО «ДОС», 2002.
Математика. Практикум. 5-11 классы. Электронное учебное издание. М., ООО «Дрофа», ООО «ДОС», 2003.
Информационно-методическое обеспечение
Предполагается использование следующих программно-педагогических средств, реализуемых с помощью компьютера:
-
Математика: еженедельное учебно-методическое приложение к газете «Первое сентября». http://mat.lseptember.ru.
Для обеспечения плодотворного учебного процесса предполагается использование информации и материалов следующих интернет-ресурсов:
-
Министерство образования и науки РФ: http://www.mon.gov.ru/
-
Федеральное государственное учреждение «Государственный научно-исследовательский институт информационных технологий и телекоммуникаций»: http://www. informika.ru/
-
Тестирование on-line: 5-11 классы: http://www.kokch.kts.ru/cdo/
-
Путеводитель «В мире науки» для школьников: http://www.uic.ssu. samara.ru/~nauka/
-
Мегаэнциклопедия Кирилла и Мефодия: http://mega.km.ru/
-
Сайт энциклопедий: http://www.encyclopedia.ru/
-
Электронные образовательные ресурсы к учебникам в Единой коллекции www.school-collection.edu.ru
-
http://www.informika.ru/projects/infotech/school-collection/
- Подготовка к олимпиадам на уроках математики в 5–6 классах
- Вебинар «GOOGLE-формы как практический инструментарий в повседневной деятельности педагога»
- Вебинар «Youtube-канал как неотделимый компонент GOOGLE-аккаунта»
- Вебинар «Детская агрессия: нейроигровые приемы обучению саморегуляции, способам выражения гнева в приемлемой форме, формирование позитивных качеств личности»
- Вебинар «Игровая деятельность, направленная на развитие социально-коммуникативных навыков дошкольников: воспитываем эмпатию, развиваем умение договариваться и устанавливать контакты, осваиваем способы разрешения конфликтных ситуаций»
- Вебинар «Основные правила и способы информирования инвалидов, в том числе граждан, имеющих нарушение функции слуха, зрения, умственного развития, о порядке предоставления услуг на объекте, об их правах и обязанностях при получении услуг»
уникальность рабочей программы - 27 %.
Зачем эти материалы размещены на странице без разрешения авторов?