В вашем браузере отключен JavaScript. Из-за этого многие элементы сайта не будут работать. Как включить JavaScript?

Учебно-Методический портал
Успей до повышения цен! 25 и 26 декабря 2024 г. Скидки 72% на ВСЁ! Подробнее

Рабочая учебная программа по алгебре 7 - 9 классы

Рабочая учебная программа по алгебре 7 - 9 классы

Ирина Едемская
Тип материала: Программа
просмотров: 27367 комментариев: 1
Краткое описание
Рабочая учебная программа по алгебре  
Основное общее образование
7 - 9 классы по учебникам Г. В. Дорофеева
Описание
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Рабочая учебная программа составлена на основе  примерной  программы основного общего образования по предмету «Математика»,  программы «Алгебра,7 кл.», «Алгебра,8 кл.», «Алгебра,9 кл.» под ред. Г. В. Дорофеева, С. Б. Суворовой, Е. А. Бунимовича и др.,  учебников: Г.В.Дорофеев, С.Б.Суворова, Е.А.Бунимович и др. Алгебра: учебник для  7 класса основной школы. — М.: Просвещение, 2008.; Г.В.Дорофеев, С.Б.Суворова, Е.А.Бунимович и др. Алгебра: учебник для  8 класса основной школы. — М.: Просвещение, 2008; Г.В.Дорофеев, С.Б.Суворова, Е.А.Бунимович и др. Алгебра: учебник для  9 класса основной школы. — М.: Просвещение,2008 г.
На изучение алгебры в 7 – 9 классах  в соответствии с ФБУП 2004 года отводится 306 часа (в том числе в 7 классе -  102 часов из расчёта 3 часов в неделю,  в 8 классе  — 102 часов из расчёта 3 часов в неделю, в 9 классе  — 102 часов из расчёта 3 часов в неделю).
Курс алгебры в 7 — 9 классах  направлен на достижение следующих целей:
овладение системой математических знаний и умений, необ­ходимых для применения в практической деятельности, изу­чения смежных дисциплин, продолжения образования;
интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современ­ном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культу­ры, пространственных представлений, способности к преодо­лению трудностей;
формирование представлений об идеях и методах математи­ки как универсального языка науки и техники, средства мо­делирования явлений и процессов;
воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии;
формирование функциональной грамотности — умений воспри­нимать и анализировать информацию, представленную в раз­личных формах, понимать вероятностный характер многих ре­альных зависимостей, производить простейшие вероятностные расчеты;
формирование представления о современной картине мира и методах его ис­следования, формирование понимание роли статистики как источ­ника социально значимой информации и закладываются основы вероятностного мышления.
развитие представления о числе и роли вычислений в человече­ской практике; формирование практических навыков выполнения устных, письменных, инструментальных вычислений, развитие вычислительной культуры;
овладение символическим языком алгебры, выработка фор­мально-оперативных алгебраических умений;
изучение свойства и графики элементарных функций, формирование умений использовать функционально-графические представления для описания и анализа реальных зависимостей;
получение представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особен­ностях выводов и прогнозов, носящих вероятностный характер;
развитее логического мышления и речи — умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
На основании письма Минобразования России от 23 сентября 2003г. № 03-93 ин/13-03 «О введении элементов комбинаторики, статистики и теории вероятностей в содержание математического образования основной школы», пристальное внимание уделяется освоению элементов теории вероятности и статистики.
Изучение материала раздела «Элементы логики, комбинаторики, статистики и теории вероятности» начинается с 5 класса и распределяется по классам следующим образом:
в 5 классе (14ч.): Комбинаторика: перебор вариантов. Решение комбинаторных задач путём систематического перебора возможных вариантов. Случайные события. Сбор и группировка статистических данных. Наглядное представление статистической информации (представление данных в виде таблиц, диаграмм).

в 6 классе(10ч.): Наглядное представление статистической информации (столбчатые и круговые диаграммы). Множества (элементы множества, подмножество, диаграммы Эйлера). Операции над множествами. Комбинаторика: логика перебора, правило умножения. Случайные события: Сравнение шансов. Эксперименты со случайными исходами.
в 7 классе(13ч.): Статистические характеристики. Наглядное представление статистической информации (представление графиков). Решение комбинаторных задач путём систематического перебора возможных вариантов, а также с использованием правила умножения. Перестановки. Относительная частота случайного события. Оценка вероятности случайного события по его частоте.
в 8 классе (6 ч.): Статистические характеристики ряда данных, медиана, сред­нее арифметическое, размах. Таблица частот. Вероятность равновозможных событий. Классическая формула вычисления ве­роятности события и условия ее применения. Представление о геометрической вероятности.
в 9 классе (6 ч.): Статистические исследования. Комбинаторные задачи. Перестановки, размещения, сочетания.

 ПЕРЕЧЕНЬ РАЗДЕЛОВ (ТЕМ) ПРОГРАММЫ

Наименование разделов (тем)
Количество часов
Контрольные работы
VII класс

1
Дроби и проценты
13
К/р №1
2
Прямая и обратная пропорциональность
11
К/р №2
3
Введение в алгебру
12
К/р №3
4
Уравнения
12
К/р №4
5
Координаты и графики
8
К/р №5
6
Свойства степени с натуральным показателем
8
К/р №6
7
Многочлены
14
К/р №7
К/р №8
8
Разложение многочленов на множители
15
К/р №9
9
Частота и вероятность
4

10
Повторение
5
К/р 10
Итого
102
10
VIII
класс

1
Алгебраические дроби
23
К/р №1
2
Квадратные корни

17

К/р №2
3
Квадратные уравнения

20

К/р №3
4
Системы уравнений
18

К/р №4
5
Функции

14
К/р №5
6
Вероятность и статистика

6

К/р №6
7
Повторение

4
К/р №7
Итого
102
к/р — 7
IX
класс

1
Неравенства
19
К/р. № 1
2
Квадратичная функция
20

К/р. №2
3
Уравнения и системы уравнений
25
К/р. №3
К/р. №4
4
Арифметическая и геометрическая прогрессии

17

К/р. №5
5
Статистические исследования. Комбинаторика
6

6
Повторение
15
К/р. № 6
Итого
102
к/р — 6

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА
VII класс
1. Дроби и проценты (13 ч.)
Обыкновенные и десятичные дроби. Сравнение дробей. Вычисления с рациональными числами. Степень с натуральным показателем. Задачи на проценты. Статистические характеристики:  среднее ариф­метическое, мода, размах.
Основная цель — систематизировать и обобщить сведе­ния об обыкновенных и десятичных дробях, обеспечить на этой основе дальнейшее развитие вычислительных навыков, умение решать задачи на проценты; сформировать первоначальные уме­ния статистического анализа числовых данных.
В соответствии с идеологией курса данная тема представляет собой блок арифметических вопросов. Основное внимание уделяется дальнейшему развитию вычислительной культуры: отрабатываются умения находить десятичные эквиваленты или десятичные приближения обыкновенных дробей, выполнять действия с числами, в том числе с использованием калькулятора.
Продолжается начатая в 6 классе работа по вычислению числовых значений буквенных выражений. Вычислительные навыки учащих­ся получают дальнейшее развитие при изучении степени с натуральным показателем; учащиеся должны научиться находить значения выражений, содержащих действие возведения в степень, а также записывать большие и малые числа с использованием степеней числа 10. Продолжается решение более сложных о сравнению с предыдущим годом задач на проценты. Основное содержание последнего блока темы — знакомство с некоторыми статистическими характеристиками. Учащиеся должны научиться в несложных случаях находить среднее ариф­метическое, моду и размах числового ряда.
2.
Прямая и обратная пропорциональности (11 ч.)
     Представление  зависимости  между  величинами  с  помощью формул. Прямая пропорциональность. Обратная пропорциональность. Пропорции, решение задач с помощью пропорций. Пропорциональное деление
Основная цель — сформировать представления о прямой и обратной пропорциональностях величин; ввести понятие про­порции и научить учащихся использовать пропорции при реше­нии задач.
Изучение темы начинается с обобщения и систематизации зна­ний учащихся о формулах, описывающих зависимости между ве­личинами. Вводится понятие переменной, которое с этого момента должно активно использоваться в речи учащихся. В результате изучения материала учащиеся должны уметь осуществлять пере­вод задач на язык формул, выполнять числовые подстановки в формулы, выражать переменные из формул. Особое внимание уде­ляется формированию представлений о прямой и обратной про­порциональной зависимостях и формулам, выражающим такие за­висимости между величинами. Формируется представление о пропорции и решении задач с помощью пропорций.
3.
Введение в алгебру (12 ч.)
Буквенные выражения. Числовые подстановки в буквенное выражение. Преобразование буквенных выражений: раскрытие скобок, приведение подобных слагаемых.
Основная цель — сформировать у учащихся первоначальные представления о языке алгебры, о буквенном исчислении; научить выполнять элементарные базовые преобразования бук­венных выражений.
В 7 классе начинается систематическое изучение алгебраиче­ского материала. Введение буквенных равенств мотивируется опытом работы с числами, осознанием и обобщением приемов вычислений. На этом этапе раскрывается смысл свойств арифметических дейст­вий как законов преобразований буквенных выражений, форми­руются умения упрощать несложные произведения, раскрывать скобки, приводить подобные слагаемые.
4. Уравнения (12 ч.)
Алгебраический способ решения задач. Корни уравнения. Решение уравнений. Решение задач с помощью уравнений
Основная цель — познакомить учащихся с понятиями «уравнение» и «корень уравнения», с некоторыми свойствами уравне­ний; сформировать умение решать несложные линейные уравне­ния с одной переменной; начать обучение решению текстовых за­дач алгебраическим способом.
Рассматриваются некоторые приемы составления уравнения по условию задачи, возможность составления разных уравнений по одному и тому же условию, формируется умение выбирать наи­более предпочтительный для конкретной задачи вариант урав­нения. Переход к алгебраическому методу решения задач одно­временно служит мотивом для обучения способу решения уравнений. Основное внимание в этой теме уделяется решению линейных уравнений с одной переменной, показываются некото­рые технические приемы решения.
5. Координаты и графики (8 ч.)
Числовые промежутки. Расстояние между точками на коор­динатной прямой. Множества точек на координатной плоскости. Графики зависимостей у = х, у = х2, у = х3, у = | х |. Графики реальных зависимостей.
Основная цель — развить умения, связанные с работой на координатной прямой и на координатной плоскости; познакомить с графиками зависимостей у = х, у = -х, у = х2, у = х3, у = | х |; сформировать первоначальные навыки интерпретации графиков реальных зависимостей.
При изучении курса математики в 5 — 6 классах учащиеся по­знакомились с идеей координат. В этой теме рассматриваются различные множества точек на координат­ной прямой и на координатной плоскости, при этом формируется умение переходить от алгебраического описания множества точек к геометрическому изображению и наоборот. Рассматривается формула расстояния между точками координатной прямой. При изучении темы учащиеся знакомятся с графиками таких зависимостей, как у = х, у = — х,
 у = х2, у = х3, у = | х |. В резуль­тате учащиеся должны уметь достаточно быстро строить каждый из перечисленных графиков, указывая его характерные точ­ки. Сформированные умения могут стать основой для выполне­ния заданий на построение графиков кусочно-заданных зависи­мостей. Специальное внимание в данной теме уделяется работе с гра­фиками реальных зависимостей — температуры, движения и пр., причем акцент должен быть сделан на считывание с графика нужной информации. Важно, чтобы учащиеся получили пред­ставление об использовании графиков в самых различных облас­тях человеческой деятельности.
6. Свойства степени с натуральным показателем (8 ч.)
Произведение и частное степеней с натуральными показателями. Степень степени, произведения и дроби. Решение комбинаторных задач, формула перестановок.
Основная цель — выработать умение выполнять действия над степенями с натуральными показателями; научить приме­нять правило умножения при решении комбинаторных задач.
Учащимся уже знакомо определение степени с натуральным показателем, и у них есть некоторый опыт преобразования выра­жений, содержащих степени, на основе определения. Основное содержание данной темы состоит в рассмотрении свойств степени и выполнении действий со степенями. Сформированные умения могут найти применение при выполнении заданий на сокращение дробей, числители и знаменатели которых — произведения, со­держащие степени. В этой же теме продолжается обучение решению комбинатор­ных задач, в частности задач, решаемых на основе комбинаторно­го правила умножения. Дается специальное название одному из видов комбинаций — перестановки и рассматривается формула для вычисления числа перестановок. Это первая комбинаторная формула, сообщаемая учащимся.
7. Многочлены (14 ч.)

Одночлены и многочлены. Сложение, вычитание и умноже­ние многочленов. Формулы сокращенного умножения: квадрат суммы и квадрат разности, куб суммы и куб разности. Решение задач с помощью уравнений

Основная цель — выработать умения выполнять дейст­вия с многочленами, применять формулы квадрата суммы и квадрата разности, куба суммы и куба разности для преобразова­ния квадрата и куба двучлена в многочлен.
Изучение данной темы опирается на знания, полученные при изучении темы «Введение в алгебру». Используются свойства ал­гебраических сумм и произведений, правила раскрытия скобок и приведения подобных слагаемых. Терминами «одночлен» и «мно­гочлен» называются такие алгебраические выражения, с которы­ми учащиеся, по сути, уже имели дело. Основное внимание в данной теме уделяется рассмотрению алгоритмов выполнения действий над многочленами — сложе­ния, вычитания, умножения, при этом подчеркивается следую­щий теоретический факт: сумму, разность и произведение много­членов всегда можно представить в виде многочлена. В ходе практической деятельности учащиеся должны выполнить зада­ния комплексного характера, предусматривающие выполнение нескольких действий. Однако следует иметь в виду, что на этом этапе основным результатом является овладение собственно алго­ритмами действий над многочленами, а преобразованиям целых выражений будет уделено внимание еще и в 8 классе. Овладение действиями с многочленами сопровождается развитием умений решать линейные уравнения и применять алгебраический метод решения текстовых задач.
8. Разложение многочленов на множители (15 ч.)
Вынесение общего множителя за скобки. Способ группировки. Формула разности квадратов, формулы суммы кубов и разности кубов. Разложение на множители с применением нескольких способов. Решение уравнений с помощью разложения на множители.
Основная цель — выработать умение выполнять разложе­ние на множители с помощью вынесения общего множителя за скобки и способом группировки, а также с применением формул сокращенного умножения.
Вопрос о разложении многочленов на множители дается в ви­де отдельной темы, в которую отнесено также знакомство с формулами разности квадратов, разности и суммы кубов. Рас­сматриваются некоторые специальные приемы преобразования многочленов, после которых становится возможным применение способа группировки: разбиение какого-то члена многочлена на два слагаемых и более, а также прием «прибавить — вычесть». Следует продолжить формиро­вание умений сокращать дроби и рассмотреть приемы решения уравнений на основе равенства произведения нулю.
9. Частота и вероятность (4ч.)
Относительная частота случайно­го события. Вероятность случайного события
Основная цель — показать возможность оценивания ве­роятности случайного события по его частоте.
Особенностью предлагаемой методики является статистический подход к понятию вероятности: вероятность случайного события оценивается по его частоте при проведении большой се­рии экспериментов. Процесс стабилиза­ции частоты полезно иллюстрировать с помощью графика.
 10. Повторение (5 ч.)
VIII класс
1.   Алгебраические дроби (23ч.)
Алгебраическая дробь. Основное свойство алгебраической дро­би. Сокращение дробей. Сложение, вычитание, умножение и деление алгебраических дробей. Степень с целым показателем и ее свойства. Выделение множителя — степени десяти — в записи числа.
Основная цель — сформировать умения выполнять дейст­вия с алгебраическими дробями, действия со степенями с целым показателем; развить навыки решения текстовых задач алгебраи­ческим методом.
Эта тема является естественным продолжением и развитием начатого в 7 классе систематического изучения преобразований рациональных выражений. Изложение целесообразно строить, как и при изучении преобразований буквенных выражений в 7 классе, с опорой на опыт работы с числами. Главным результа­том обучения должно явиться владение алгоритмами сложения, вычитания, умножения и деления алгебраических дробей. Коли­чество и уровень сложности заданий, требующих выполнения не­скольких действий, определяются самим учителем в зависимости от возможностей класса. При этом необходимо иметь в виду, что в соответствии с общей идеей развития содержания курса по спи­рали в 9 классе предусмотрен еще один «проход» преобразования рациональных выражений.
Самостоятельный фрагмент темы посвящен изучению степени с целым показателем. Мотивом для введения этого понятия служит целесообразность представления больших и малых чисел в, так называемом стандартном виде. С этим способом записи чисел учащиеся уже встречались на уроках физики.
Завершается тема фрагментом, посвященным решению урав­нений и текстовых задач. По сравнению с курсом 7 класса здесь предлагаются более сложные в техническом отношении уравне­ния (хотя, как и в 7 классе, это по-прежнему целые уравнения, но содержащие дробные коэффициенты).
2.   Квадратные корни (17 ч.).
Квадратный корень из числа. Понятие об иррациональном числе. Десятичные приближения квадратного корня. Свойства арифметического квадратного корня и их применение к пре­образованию выражений. Корень третьей степени, понятие о кор­не п-й степени из числа. Нахождение приближенного значения корня с помощью калькулятора. Графики зависимостей  и .
Основная цель — научить преобразованиям выражений, со­держащих квадратные корни; на примере квадратного и кубиче­ского корней сформировать представления о корне n-й степени.
Понятие квадратного корня возникает в курсе при обсужде­нии двух задач  геометрической (о нахождении стороны квад­рата по его площади) и алгебраической (о числе корней уравне­ния вида х2 = а, где а — произвольное число). При рассмотрении первой из них даются начальные представления об иррациональ­ных числах.
В содержание темы целесообразно включить нетрадиционный для алгебры вопрос — теорему Пифагора. Это позволит проде­монстрировать естественное применение квадратных корней для нахождения длин отрезков, построения отрезков с иррациональ­ными длинами, точек с иррациональными координатами.
Целесообразно также активно использовать калькулятор, причем не только в качестве инструмента для извлечения кор­ней, но и как средство, позволяющее проиллюстрировать некото­рые теоретические идеи.
В ходе изучения данной темы предусматривается знакомство с понятием кубического корня, одновременно формируются на­чальные представления о корне n-й степени. Рассматриваются графики зависимостей  и .
3.   Квадратные уравнения (20 ч.).
Квадратное уравнение. Формулы корней квадратного уравнения. Решение текстовых задач составлением квадратных уравнений. Теорема Виета. Разложение на множители квадратного трехчлена.
Основная цель — научить решать квадратные уравнения и использовать их при решении текстовых задач.
В тему включен весь материал, традиционно относящийся к этому разделу курса. В то же время предлагаются и некоторые существенные изменения: рассмотрение теоремы Виета связыва­ется с задачей разложения квадратного трехчлена на множители; в систему упражнений должны постоянно включаться задания на решение уравнений высших степеней; следует активно использо­вать метод подстановки.
Большое место должно быть отведено решению текстовых за­дач, при этом рассматриваются некоторые особенности математи­ческих моделей, описывающих реальные ситуации.
В связи с рассмотрением вопроса о разложении на множители квадратного трехчлена появляется возможность для дальнейшего развития линии преобразований алгебраических выражений.
4.   Системы уравнений (18 ч.).
Уравнение с двумя переменными. Линейное уравнение с дву­мя переменными и его график. Примеры решения уравнений в целых числах. Система уравнений; решение систем двух линей­ных уравнений с двумя переменными, графическая интерпрета­ция. Примеры решения нелинейных систем. Решение текстовых задач составлением систем уравнений. Уравнение с несколькими переменными.
Основная цель — ввести понятия уравнения с двумя пе­ременными, графика уравнения, системы уравнений; обучить ре­шению систем линейных уравнений с двумя переменными, а так­же использованию приема составления систем уравнений при решении текстовых задач.
Основное содержание данной темы курса связано с рассмо­трением линейного уравнения и решением систем линейных уравнений. В то же время приводятся примеры и нелинейных уравнений, рассматриваются их графики, решаются системы, в которых одно уравнение не является линейным.
Особенностью изложения является акцентирование внимания на блоке вопросов, по сути относящихся к аналитической геомет­рии. Тема начинается с вопроса о прямых на координатной плос­кости: рассматривается уравнение прямой в различных формах, специальное внимание уделяется уравнению вида , фор­мулируется условие параллельности прямых, а в качестве необя­зательного материала может быть рассмотрено условие перпенди­кулярности прямых. Сформированный аналитический аппарат применяется к решению задач геометрического содержания (на­пример, составление уравнения прямой, проходящей через две данные точки, прямой, параллельной данной и проходящей через данную точку, и пр.).
Продолжается решение текстовых задач алгебраическим ме­тодом. Теперь математической моделью рассматриваемой ситуа­ции является система уравнений, при этом в явном виде форму­лируется следующая мысль: при переводе текстовой задачи на математический язык удобно вводить столько переменных, сколько неизвестных содержится в условии.
5.   Функции (14 ч.).
Функция. Область определения и область значений функции. График функции. Возрастание и убывание функции, сохранение знака на промежутке, нули функции. Функции  и их графики. Примеры графических зависимостей, отражающих реальные процессы.
Основная    цель — познакомить   учащихся   с   понятием функции, расширить математический язык введением функциональной терминологии и символики; рассмотреть свойства и гра­фики   конкретных   числовых   функций:   линейной   функции    и функции; показать значимость функционального аппарата для моделирования реальных ситуаций, научить в несложных случаях применять полученные знания для решения прикладных и практических задач.
Материал данной темы опирается на умения, полученные в ре­зультате работы с графиками реальных зависимостей между величинами. Акцент делается не столько на определение поня­тия функции и связанных с ним понятий, сколько на введение нового языка, новой терминологии и символики. При этом но­вый язык постоянно сопоставляется с уже освоенным: внимание обращается на умение переформулировать задачу или вопрос, перевести их с языка графиков на язык функций либо уравнений и пр.
Особенностью данной темы является прикладная направлен­ность учебного материала. Основное внимание уделяется гра­фикам реальных зависимостей, моделированию разнообразных реальных ситуаций, формированию представления о скоро­сти роста или убывания функции. При изучении линейной функ­ции следует явно сформулировать мысль о том, что линейной функцией описываются процессы, протекающие с постоянной скоростью, познакомить учащихся с идеей линейной аппрокси­мации.
6.   Вероятность и статистика (6 ч.).
Статистические характеристики ряда данных, медиана, сред­нее арифметическое, размах. Таблица частот. Вероятность равновозможных событий. Классическая формула вычисления ве­роятности события и условия ее применения. Представление о геометрической вероятности.
Основная цель — сформировать представление о возмож­ностях описания и обработки данных с помощью различных средних; познакомить учащихся с вычислениями вероятности случайного события с помощью классической формулы и из гео­метрических соображений.
Материал данной темы знакомит с ситуациями, требующими вы­числения средних для адекватного описания ряда данных. Основное внимание уделяется целесообразности использования моды, медиа­ны или среднего арифметического в зависимости от ситуации.
В предыдущих классах был рассмотрен статистический под­ход к понятию вероятности, на основе которого вводится гипоте­за о равновероятности событий, позволяющая в ситуации с равновозможными исходами применять классическую формулу вычисления вероятности события. Кроме того, рассматривается геометрический подход к понятию вероятности, позволяющий в некоторых ситуациях с бесконечным количеством исходов вы­числять вероятность наступления события как отношения площадей фигур.

7. Повторение (4 ч.)
IX
класс

1. Неравенства (19 ч.).
Действительные числа как бесконечные десятичные дроби. Числовые неравенства и их свойства. Доказательство числовых и алгебраических неравенств. Линейные неравенства с одной пере­менной и их системы. Точность приближения, относительная точность.
Основная цель — познакомить учащихся со свойствами числовых неравенств и их применением к решению задач (срав­нение и оценка значений выражений, доказательство неравенств и др.); выработать умение решать линейные неравенства с одной переменной и их системы.
Изучение темы начинается с обобщения и систематизации знаний о действительных числах, повторения известных уча­щимся терминов: натуральные, целые, рациональные, действи­тельные числа — и рассмотрения отношений между соответ­ствующими числовыми множествами. При этом бесконечная десятичная дробь не является исходным понятием для определе­ния действительного числа, а рассматривается как его «универ­сальное имя». Вопрос о периодических и непериодических дро­бях может быть отнесен к необязательному материалу.
Свойства числовых неравенств иллюстрируются геометри­чески и подтверждаются числовыми примерами. Рассмотрение вопроса о решении линейных неравенств с одной переменной со­провождается введением понятий равносильных уравнений и не­равенств, формулируются свойства равносильности уравнений и неравенств. Приобретенные учащимися умения получают разви­тие при решении систем линейных неравенств с одной перемен­ной. Рассматривается также вопрос о доказательстве неравенств. Учащиеся знакомятся с некоторыми приемами доказательства неравенств; система упражнений содержит значительное число заданий на применение аппарата неравенств.
2. Квадратичная функция (20 ч.).
Функция  и ее график. Свойства квадратичной функции: возрастание и убывание, сохранение знака на проме­жутке, наибольшее (наименьшее) значение. Решение неравенств  второй степени с одной переменной.
Основная цель — познакомить учащихся с квадратичной функцией как с математической моделью, описывающей многие зависимости между реальными величинами; научить строить гра­фик квадратичной функции и читать по графику ее свойства; сформировать умение использовать графические представления для решения квадратных неравенств.
Особенность принятого подхода заключается в том, что изуче­ние темы начинается с общего знакомства с функцией; рассматриваются готовые графики квадратичных функций и анализируются их особенности (наличие оси симмет­рии, вершины, направление ветвей, расположение по отношению к оси х), при этом активизируются общие сведения о функциях, известные учащимся из курса 8 класса; учащиеся учатся строить параболу по точкам с опорой на ее симметрию. Далее следует бо­лее детальное изучение свойств квадратичной функции, особенно­стей ее графика и приемов его построения. В связи с этим может рассматриваться перенос вдоль осей координат произвольных гра­фиков. Центральным моментом темы является доказательство то­го, что график любой квадратичной функции мо­жет быть получен с помощью сдвигов вдоль координатных осей параболы . Теперь учащиеся по коэффициентам квадратно­го трехчлена  могут представить общий вид соответст­вующей параболы и вычислить координаты ее вершины.
В системе упражнений значительное место должно отводить­ся задачам прикладного характера, которые решаются с опорой на графические представления. Завершается эта тема рассмотре­нием квадратных неравенств, прием решения которых основан на умении определять промежутки, где график функции располо­жен выше (ниже) оси абсцисс.
3. Уравнения и системы уравнений (25 ч.).
Рациональные выражения. Допустимые значения перемен­ных, входящих в алгебраические выражения. Тождество, доказа­тельство тождеств. Решение целых и дробных уравнений с одной переменной. Примеры решения нелинейных систем уравнений с двумя переменными. Решение текстовых задач. Графическая ин­терпретация решения уравнений и систем уравнений.
Основная цель — систематизировать сведения о рацио­нальных выражениях и уравнениях; познакомить учащихся с не­которыми приемами решения уравнений высших степеней, обу­чить решению дробных уравнений, развить умение решать системы нелинейных уравнений с двумя переменными, а также текстовые задачи; познакомить с применением графиков для ис­следования и решения систем уравнений с двумя переменными и уравнений с одной переменной.
В данной теме систематизируются, обобщаются и развивают­ся теоретические представления и практические умения учащих­ся, связанные с рациональными выражениями, уравнениями, системами уравнений. Уточняется известное из курса 7 класса понятие тождественного равенства двух рациональных выраже­ний; его содержание раскрывается с двух позиций — алгебраиче­ской и функциональной. Вводится понятие тождества, обсужда­ются приемы доказательства тождеств.
Значительное место в теме отводится решению рациональных уравнений с одной переменной. Систематизируются и углубляют­ся знания учащихся о целых уравнениях, основное внимание уде­ляется решению уравнений третьей и четвертой степени уже зна­комыми учащимся приемами — разложением на множители и введением новой переменной. Здесь же учащиеся впервые встреча­ются с решением уравнений, содержащих переменную в знамена­теле дроби. Продолжается решение систем уравнений, в том числе рассматриваются системы, в которых одно уравнение первой, а другое — второй степени, и примеры более сложных систем.
В заключение проводится графическое исследование уравне­ний с одной переменной. Вообще графическая интерпретация ал­гебраических выражений, уравнений и систем должна широко использоваться при изложении материала всей темы.
4. Арифметическая и геометрическая прогрессии (17 ч.).
Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы п членов арифметической и геометрической про­грессий. Простые и сложные проценты.
Основная цель — расширить представления учащихся о числовых последовательностях; изучить свойства арифметиче­ской и геометрической прогрессий; развить умение решать зада­чи на проценты.
В данной теме вводятся необходимые термины и символика, в результате чего создается содержательная основа для осознанного изучения числовых последовательностей, которые неоднократно встречались в предыдущих темах курса. Характерной ее особен­ностью должны являться широта и разнообразие практических иллюстраций, акцент на связь изучаемого материала с окружаю­щим миром. Введение понятий арифметической и геометриче­ской прогрессий следует осуществлять на основе рассмотрения примеров из реальной жизни. На конкретных примерах вводятся понятия простых и сложных процентов, которые позволяют рас­смотреть большое число практико-ориентированных задач.
5. Статистические исследования. Комбинаторика (6 ч.).
Генеральная совокупность и выборка. Ранжирование данных. Полигон частот. Интервальный ряд. Гистограмма. Выборочная дисперсия, среднее квадратичное отклонение. Комбинаторные задачи. Перестановки, размещения, сочетания.
Основная цель — сформировать представление о стати­стических исследованиях, обработке данных и интерпретации ре­зультатов.
В данной теме представлен завершающий фрагмент вероятно­стно-статистической линии курса. В ней рассматриваются до­ступные учащимся примеры комплексных статистических иссле­дований, в которых используются полученные ранее знания о случайных экспериментах, способах представления данных и статистических характеристиках. В ходе описания исследований вводятся некоторые новые статистические понятия, отражающие специфику данного исследования. Они позволяют понять как центральные тенденции ряда данных, так и меру вариации. Включение данного материала направлено прежде всего на фор­мирование умений понимать и интерпретировать статистические результаты, представляемые в средствах массовой информации.
Предполагается не столько формальное заучивание новых терми­нов, сколько первоначальное знакомство с понятийным аппара­том этой области знаний, необходимой каждому современному человеку.
6. Повторение (15 ч.).

ПЕРЕЧЕНЬ ТЕМ КОНТРОЛЬНЫХ РАБОТ
VII класс
1. Дроби и проценты
2. Прямая и обратная пропорциональность
3. Введение в алгебру
4. Уравнения
5. Координаты и графики
6. Свойства степени с натуральным показателем
7. Действия с многочленами
8. Формулы сокращённого умножения
9. Разложение многочленов на множители
10. Итоговый тест
VIII класс
1. Алгебраические дроби
2. Квадратные корни
3. Квадратные уравнения
4. Системы уравнений
5. Функции
6. Вероятность и статистика
7. Итоговый тест
IX
класс

1. Неравенства
2. Квадратичная функция
3. Уравнения
4. Системы уравнений
5. Арифметическая и геометрическая прогрессии
6. Итоговый тест

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ОБУЧАЮЩИХСЯ
В результате изучения курса учащиеся должны:
знать/понимать
существо понятия математического доказательства; приво­дить примеры доказательств;
существо понятия алгоритма; приводить примеры алгоритмов;
как используются математические формулы, уравнения и не­равенства; примеры их применения для решения математиче­ских и практических задач;
как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
как потребности практики привели математическую науку к необходимости расширения понятия числа;
вероятностный характер многих закономерностей окружающе­го мира; примеры статистических закономерностей и выводов;
каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утвержде­ний о них, важных для практики;
смысл идеализации, позволяющей решать задачи реальной
действительности математическими методами, примеры оши­бок, возникающих при идеализации.
Уметь
выполнять устно арифметические действия: сложение и вы­читание двузначных чисел и десятичных дробей с двумя зна­ками, умножение однозначных чисел, арифметические опера­ции с обыкновенными дробями с однозначным знаменателем и числителем;
переходить от одной формы записи чисел к другой, представ­лять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты — в ви­де дроби и дробь — в виде процентов; записывать большие и малые числа с использованием целых степеней десятки;
выполнять арифметические действия с рациональными числа­ми, сравнивать рациональные и действительные числа; нахо­дить в несложных случаях значения степеней с целыми показа­телями и корней; находить значения числовых выражений;
округлять целые числа и десятичные дроби, находить при­ближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;
пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные едини­цы через более мелкие и наоборот;
решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и про­центами;
составлять буквенные выражения и формулы по условиям за­дач; осуществлять в выражениях и формулах числовые под­становки и выполнять соответствующие вычисления, осуще­ствлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
применять свойства арифметических квадратных корней для
вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;
решать линейные и квадратные неравенства с одной переменной и их системы;
решать текстовые задачи алгебраическим методом, интерпре­тировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
изображать числа точками на координатной прямой;
определять координаты точки плоскости, строить точки с за­данными координатами; изображать множество решений ли­нейного неравенства;
распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и сум­мы нескольких первых членов;
находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
описывать свойства изученных функций, строить их графики;
проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использо­вать примеры для иллюстрации и контрпримеры для опровер­жения утверждений;
извлекать информацию, представленную в таблицах, на диа­граммах, графиках; составлять таблицы, строить диаграммы и графики;
решать комбинаторные задачи путем систематического перебора возможных вариантов и с использованием правила умножения;
вычислять средние значения результатов измерений;
находить частоту события, используя собственные наблюде­ния и готовые статистические данные;
находить вероятности случайных событий в простейших слу­чаях.
использовать приобретенные знания и умения
в практической деятельности и повседневной жизни для:
решения несложных практических расчетных задач, в том числе с использованием при необходимости справочных мате­риалов, калькулятора, компьютера;
устной прикидки и оценки результата вычислений; проверки результата вычисления, с использованием различных приемов;
интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений;
выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
моделирования практических ситуаций и исследования по­строенных моделей с использованием аппарата алгебры;
описания зависимостей между физическими величинами со­ответствующими формулами при исследовании несложных практических ситуаций;
интерпретации графиков реальных зависимостей между вели­чинами;
выстраивания аргументации при доказательстве и в диалоге;
распознавания логически некорректных рассуждений;
записи математических утверждений, доказательств;
анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;
решения практических задач в повседневной и профессио­нальной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;
решения учебных и практических задач, требующих система­тического перебора вариантов;
сравнения   шансов   наступления   случайных   событий,   для оценки вероятности случайного события в практических си­туациях, сопоставления модели с реальной ситуацией; понимания статистических утверждений.

КРИТЕРИИ И НОРМЫ ОЦЕНКИ ЗНАНИЙ ОБУЧАЮЩИХСЯ
Единые нормы являются основой при оценке как контрольных, так и всех других письменных работ по математике. Применяя эти нормы, учитель должен индивидуально подходить к оценке каждой письменной работы учащегося, обращать внимание на качество выполнения работы в целом, а затем уже на количество ошибок и на их характер.
Оценка письменной работы определяется с учётом прежде всего её общего математического уровня, оригинальности, последовательности, логичности её выполнения, а также числа ошибок и недочётов и качества оформления работы.
Ошибка, повторяющаяся в одной работе несколько раз, рассматривается как одна ошибка.

За орфографические ошибки, допущенные учениками, оценка не снижается; об орфографических ошибках доводится до сведения преподавателя русского языка. Однако ошибки в написании математических терминов, уже встречавшихся школьникам класса, должны учитываться как недочёты в работе.
При оценке письменных работ по математике различают грубые ошибки, ошибки и недочёты.
К грубым относятся ошибки в вычислениях, свидетельствующие о незнании таблицы сложения или таблицы умножения, связанные с незнанием алгоритма письменного сложения и вычитания умножения и деления на одно- или двузначное число и т.п., ошибки, свидетельствующие о незнании основных формул, правил и явном неумении их применять, о незнании приёмов решения задач, аналогичных ранее изученным.
Примечание. Если грубая ошибка встречается в работе только в одном случае из нескольких аналогичных, то при оценке работы эта ошибка может быть приравнена к негрубой.
Примерами негрубых ошибок являются: ошибки, связанные с недостаточно полным усвоением текущего учебного материала, не вполне точно сформулированный вопрос или пояснение при решении задачи, неточности при выполнении геометрических построений и т.п.
Недочётами считаются нерациональные записи при вычислениях, нерациональные приёмы вычислений, преобразований и решений задач, небрежное выполнение чертежей и схем, отдельные погрешности в формулировке пояснения или ответа к задаче. К недочётам можно отнести и другие недостатки работы, вызванные недостаточным вниманием учащихся, например: неполное сокращение дробей или членов отношения; обращение смешанных чисел в неправильную дробь при сложении и вычитании; пропуск наименований; пропуск чисел в промежуточных записях; перестановка цифр при записи чисел; ошибки, допущенные при переписывании, и т.п.
Оценка письменной работы по выполнению вычислительных заданий и алгебраических преобразований:
Оценка «5» ставится за безукоризненное выполнение письменной работы, т.е.: а) если решение всех примеров верное; б) если все действия и преобразования выполнены правильно, без ошибок; все записи хода решения расположены последовательно, а также сделана проверка решения в тех случаях, когда это требуется.
Оценка «4» ставится за работу, в которой допущена одна (негрубая) ошибка или два-три недочёта.
Оценка «З» ставится в следующих случаях:
а) если в работе имеется одна грубая ошибка и не более одной негрубой ошибки;
б) при наличии одной грубой ошибки и одного двух недочётов;
в) при отсутствии грубых ошибок, но при наличии от двух до четырёх (негрубых) ошибок;
г) при наличии двух негрубых ошибок и не более трёх недочётов;
д) при отсутствии ошибок, но при наличии четырёх и более недочётов;
е) если наверно выполнено не более половины объёма всей работы.
Оценка «2» ставится, когда число ошибок превосходит норму, при которой может быть выставлена положительная оценка, или если правильно выполнено менее половины всей работы.
Примечание. Оценка «5» может быть поставлена, несмотря на наличие одного-двух недочётов, если ученик дал оригинальное решение заданий, свидетельствующее о его хорошем математическом развитии.
Оценка письменной работы на решение текстовых задач:
Оценка «5» ставится в том случае, когда задача решена правильно: ход решения задачи верен, все действия и преобразования выполнены верно и рационально; в задаче, решаемой с вопросами или пояснениями к действиям, даны точные и правильные формулировки; в задаче, решаемой с помощью уравнения, даны необходимые пояснения; записи правильны, расположены последовательно, дан верный и исчерпывающий ответ на вопросы задачи; сделана проверка решения (в тех случаях, когда это требуется).

Оценка «4» ставится в том случае, если при правильном ходе решения задачи допущена одна негрубая ошибка или два-три недочёта.
Оценка «З» ставится в том случае, если ход решения правилен, но допущены:

а) одна грубая ошибка и не более одной негрубой;

б) одна грубая ошибка и не более двух недочётов;

в) три-четыре негрубые ошибки при отсутствии недочётов;

г) допущено не более двух негрубых ошибок и трёх недочётов;

д) более трёх недочётов при отсутствии ошибок.
Оценка «2» ставится в том случае, когда число ошибок превосходит норму, при которой может быть выставлена положительная оценка.
Примечания:
1. Оценка «5» может быть поставлена несмотря на наличие описки или недочёта, если ученик дал оригинальное решение, свидетельствующее о его хорошем математическом развитии.
2. Положительная оценка «З» может быть выставлена ученику, выполнившему работу не полностью, если он безошибочно выполнил более половины объёма всей работы
Оценка комбинированных письменных работ по математике:
Письменная работа по математике, подлежащая оцениванию, может состоять из задач и примеров (комбинированная работа). В таком случае преподаватель сначала даёт предварительную оценку каждой части работы, а затем общую, руководствуясь следующим:

а) если обе части работы оценены одинаково, то эта оценка должна быть общей для всей работы в целом;

б) если оценки частей разнятся на один балл, например, даны оценки «5» и «4» или «4» и «З» и т.п., то за работу в целом, как правило, ставится балл, оценивающий основную часть работы;

в) если одна часть работы оценена баллом «5», а другая — баллом «З», то преподаватель может оценить такую работу в целом баллом «4» при условии, что оценка «5» поставлена за основную часть работы;

г) если одна из частей работы оценена баллом «5» или «4», а другая — баллом «2» или «I», то преподаватель может оценить всю работу баллом «З» при условии, что высшая из двух данных оценок поставлена за основную часть работы.

Примечание. Основной считается та часть работы, которая включает больший по объёму или наиболее важный по значению материал по изучаемым темам программы.
Оценка текущих письменных работ:
При оценке повседневных обучающих работ по математике учитель руководствуется указанными
нормами оценок, но учитывает степень самостоятельности выполнения работ учащимися.

Обучающие письменные работы, выполненные учащимися вполне самостоятельно с применением ранее изученных и хорошо закреплённых знаний, оцениваются так же, как и контрольные работы.

Обучающие письменные работы, выполненные вполне самостоятельно, на только что изученные и недостаточно закреплённые правила, могут оцениваться менее строго.

Письменные работы, выполненные в классе с предварительным разбором их под руководством учителя, оцениваются более строго.
Домашние письменные работы оцениваются так же, как классная работа обучающего характера.
Промежуточная аттестация: итоговая оценка за четверть и за год:
В соответствии с особенностями математики как учебного предмета оценки за письменные работы имеют большее значение, чем оценки за устные ответы и другие виды работ.

Поэтому при выведении итоговой оценки за четверть «среднеарифметический подход» недопустим — такая оценка не отражает достаточно объективно уровень подготовки и математического развития ученика. Итоговую оценку определяют, в первую очередь, оценки за контрольные работы, затем — принимаются во внимание оценки за другие письменные и практические работы, и лишь в последнюю очередь — все прочие оценки (за устные ответы, устный счёт и т.д.). При этом учитель должен учитывать и фактический уровень знаний и умений ученика на конец четверти.
Итоговая оценка за год выставляется на основании четвертных оценок, но также с обязательным учётом фактического уровня знаний ученика на конец учебного года.

СПИСОК  ЛИТЕРАТУРЫ  ДЛЯ  ОБУЧАЮЩИХСЯ
  1. Г.В.Дорофеев, С.Б.Суворова, Е.А.Бунимович и др. Алгебра: учебник для  7 класса основной школы. — М.: Просвещение, 2008.;
  2. Г.В.Дорофеев, С.Б.Суворова, Е.А.Бунимович и др. Алгебра: учебник для  8 класса основной школы. — М.: Просвещение, 2008;
  3. Г.В.Дорофеев, С.Б.Суворова, Е.А.Бунимович и др. Алгебра: учебник для  9 класса основной школы. — М.: Просвещение, <metricconverter productid=«2008 г» w:st=«on»>2008 г
  4. .
  • С.С.Минаева, Л.О.Рослова. Алгебра: Рабочая тетрадь. 7 класс. – М.: Просвещение, 2009.;
  • Л.П.Евстафьева, А.П.Карп. Алгебра. Дидактические материалы. 7 класс. – М.: Просвещение, 2009.;
  • Л.П.Евстафьева, А.П.Карп. Алгебра. Дидактические материалы. 8 класс. – М.: Просвещение, 2010.;
  • Л.П.Евстафьева, А.П.Карп. Алгебра. Дидактические материалы. 9 класс. – М.: Просвещение, 2010.;
  • Л.В.Кузнецова, С.С. Минаева, Л.О.Рослова. Алгебра. Тематические тесты. 7 класс. – М.: Просвещение, 2010.;
  • Л.В.Кузнецова, С.С. Минаева, Л.О.Рослова. Алгебра. Тематические тесты. 8 класс. – М.: Просвещение, 2010.;
  • Л.В.Кузнецова, С.С. Минаева, Л.О.Рослова. Алгебра. Тематические тесты. 9 класс. – М.: Просвещение, 2010.;

  • Дистанционное обучение педагогов по ФГОС по низким ценам

    Вебинары, курсы повышения квалификации, профессиональная переподготовка и профессиональное обучение. Низкие цены. Более 19500 образовательных программ. Диплом госудаственного образца для курсов, переподготовки и профобучения. Сертификат за участие в вебинарах. Бесплатные вебинары. Лицензия.

    Файлы
    алгебра 7-9 2011-2012.doc Скачать

    Муниципальное бюджетное образовательное учреждение

    «Морская кадетская школа имени адмирала Котова П.Г.»












    Рабочая учебная программа

    по алгебре

    Основное общее образование

    7 - 9 классы

    2011 - 2012 учебный год


    Составлена на основе

    - примерной программы основного общего образования по математике;

    - программы Алгебра,7 кл., Алгебра,8 кл., Алгебра,9 кл. Под ред. Г. В. Дорофеева, С. Б. Суворовой, Е. А. Бунимовича и др. //Программы для общеобразовательных учреждений. Алгебра. 7-9 классы/Сост.Т.А.Бурмистрова.- М: Просвещение, 2009;

    - учебников: Г.В.Дорофеев, С.Б.Суворова, Е.А.Бунимович и др. Алгебра: учебник для 7 класса основной школы. - М.: Просвещение, 2009.; Г.В.Дорофеев, С.Б.Суворова, Е.А.Бунимович и др. Алгебра: учебник для 8 класса основной школы. - М.: Просвещение, 2008; Г.В.Дорофеев, С.Б.Суворова, Е.А.Бунимович и др. Алгебра: учебник для 9 класса основной школы. - М.: Просвещение, 2009 г.


    Программу составили: Едемская Ирина Григорьевна, учитель математики



    г. Северодвинск

    2011 г.


    ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

    Рабочая учебная программа составлена на основе примерной программы основного общего образования по предмету «Математика», программы «Алгебра,7 кл.», «Алгебра,8 кл.», «Алгебра,9 кл.» под ред. Г. В. Дорофеева, С. Б. Суворовой, Е. А. Бунимовича и др., учебников: Г.В.Дорофеев, С.Б.Суворова, Е.А.Бунимович и др. Алгебра: учебник для 7 класса основной школы. - М.: Просвещение, 2008.; Г.В.Дорофеев, С.Б.Суворова, Е.А.Бунимович и др. Алгебра: учебник для 8 класса основной школы. - М.: Просвещение, 2008; Г.В.Дорофеев, С.Б.Суворова, Е.А.Бунимович и др. Алгебра: учебник для 9 класса основной школы. - М.: Просвещение, 2008 г.

    На изучение алгебры в 7 – 9 классах в соответствии с ФБУП 2004 года отводится 306 часа (в том числе в 7 классе - 102 часов из расчёта 3 часов в неделю, в 8 классе - 102 часов из расчёта 3 часов в неделю, в 9 классе - 102 часов из расчёта 3 часов в неделю).

    Курс алгебры в 7 - 9 классах направлен на достижение следующих целей:

    • овладение системой математических знаний и умений, необ­ходимых для применения в практической деятельности, изу­чения смежных дисциплин, продолжения образования;

    • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современ­ном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культу­ры, пространственных представлений, способности к преодо­лению трудностей;

    • формирование представлений об идеях и методах математи­ки как универсального языка науки и техники, средства мо­делирования явлений и процессов;

    • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии;

    • формирование функциональной грамотности - умений воспри­нимать и анализировать информацию, представленную в раз­личных формах, понимать вероятностный характер многих ре­альных зависимостей, производить простейшие вероятностные расчеты;

    • формирование представления о современной картине мира и методах его ис­следования, формирование понимание роли статистики как источ­ника социально значимой информации и закладываются основы вероятностного мышления.

    • развитие представления о числе и роли вычислений в человече­ской практике; формирование практических навыков выполнения устных, письменных, инструментальных вычислений, развитие вычислительной культуры;

    • овладение символическим языком алгебры, выработка фор­мально-оперативных алгебраических умений;

    • изучение свойства и графики элементарных функций, формирование умений использовать функционально-графические представления для описания и анализа реальных зависимостей;

    • получение представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особен­ностях выводов и прогнозов, носящих вероятностный характер;

    • развитее логического мышления и речи - умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

    На основании письма Минобразования России от 23 сентября 2003г. № 03-93 ин/13-03 «О введении элементов комбинаторики, статистики и теории вероятностей в содержание математического образования основной школы», пристальное внимание уделяется освоению элементов теории вероятности и статистики.

    Изучение материала раздела «Элементы логики, комбинаторики, статистики и теории вероятности» начинается с 5 класса и распределяется по классам следующим образом:

    • в 5 классе (14ч.): Комбинаторика: перебор вариантов. Решение комбинаторных задач путём систематического перебора возможных вариантов. Случайные события. Сбор и группировка статистических данных. Наглядное представление статистической информации (представление данных в виде таблиц, диаграмм).

    • в 6 классе(10ч.): Наглядное представление статистической информации (столбчатые и круговые диаграммы). Множества (элементы множества, подмножество, диаграммы Эйлера). Операции над множествами. Комбинаторика: логика перебора, правило умножения. Случайные события: Сравнение шансов. Эксперименты со случайными исходами.

    • в 7 классе(13ч.): Статистические характеристики. Наглядное представление статистической информации (представление графиков). Решение комбинаторных задач путём систематического перебора возможных вариантов, а также с использованием правила умножения. Перестановки. Относительная частота случайного события. Оценка вероятности случайного события по его частоте.

    • в 8 классе (6 ч.): Статистические характеристики ряда данных, медиана, сред­нее арифметическое, размах. Таблица частот. Вероятность равновозможных событий. Классическая формула вычисления ве­роятности события и условия ее применения. Представление о геометрической вероятности.

    • в 9 классе (6 ч.): Статистические исследования. Комбинаторные задачи. Перестановки, размещения, сочетания.

    ПЕРЕЧЕНЬ РАЗДЕЛОВ (ТЕМ) ПРОГРАММЫ

    Наименование разделов (тем)

    Количество часов

    Контрольные работы

    VII класс

    1

    Дроби и проценты

    13

    К/р №1

    2

    Прямая и обратная пропорциональность

    11

    К/р №2

    3

    Введение в алгебру

    12

    К/р №3

    4

    Уравнения

    12

    К/р №4

    5

    Координаты и графики

    8

    К/р №5

    6

    Свойства степени с натуральным показателем

    8

    К/р №6

    7

    Многочлены

    14

    К/р №7

    К/р №8

    8

    Разложение многочленов на множители

    15

    К/р №9

    9

    Частота и вероятность

    4


    10

    Повторение

    5

    К/р 10

    Итого

    102

    10

    VIII класс

    1

    Алгебраические дроби

    23

    К/р №1

    2

    Квадратные корни

    17

    К/р №2

    3

    Квадратные уравнения

    20

    К/р №3

    4

    Системы уравнений

    18

    К/р №4

    5

    Функции

    14

    К/р №5

    6

    Вероятность и статистика

    6

    К/р №6

    7

    Повторение

    4

    К/р №7

    Итого

    102

    к/р - 7

    IX класс

    1

    Неравенства

    19

    К/р. № 1

    2

    Квадратичная функция

    20

    К/р. № 2

    3

    Уравнения и системы уравнений

    25

    К/р. № 3

    К/р. № 4

    4

    Арифметическая и геометрическая прогрессии

    17

    К/р. № 5

    5

    Статистические исследования. Комбинаторика

    6


    6

    Повторение

    15

    К/р. № 6

    Итого

    102

    к/р - 6


    СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

    VII класс

    1. Дроби и проценты (13 ч.)

    Обыкновенные и десятичные дроби. Сравнение дробей. Вычисления с рациональными числами. Степень с натуральным показателем. Задачи на проценты. Статистические характеристики: среднее ариф­метическое, мода, размах.

    Основная цель - систематизировать и обобщить сведе­ния об обыкновенных и десятичных дробях, обеспечить на этой основе дальнейшее развитие вычислительных навыков, умение решать задачи на проценты; сформировать первоначальные уме­ния статистического анализа числовых данных.

    В соответствии с идеологией курса данная тема представляет собой блок арифметических вопросов. Основное внимание уделяется дальнейшему развитию вычислительной культуры: отрабатываются умения находить десятичные эквиваленты или десятичные приближения обыкновенных дробей, выполнять действия с числами, в том числе с использованием калькулятора.

    Продолжается начатая в 6 классе работа по вычислению числовых значений буквенных выражений. Вычислительные навыки учащих­ся получают дальнейшее развитие при изучении степени с натуральным показателем; учащиеся должны научиться находить значения выражений, содержащих действие возведения в степень, а также записывать большие и малые числа с использованием степеней числа 10. Продолжается решение более сложных о сравнению с предыдущим годом задач на проценты. Основное содержание последнего блока темы — знакомство с некоторыми статистическими характеристиками. Учащиеся должны научиться в несложных случаях находить среднее ариф­метическое, моду и размах числового ряда.

    1. Прямая и обратная пропорциональности (11 ч.)

    Представление зависимости между величинами с помощью формул. Прямая пропорциональность. Обратная пропорциональность. Пропорции, решение задач с помощью пропорций. Пропорциональное деление

    Основная цель - сформировать представления о прямой и обратной пропорциональностях величин; ввести понятие про­порции и научить учащихся использовать пропорции при реше­нии задач.

    Изучение темы начинается с обобщения и систематизации зна­ний учащихся о формулах, описывающих зависимости между ве­личинами. Вводится понятие переменной, которое с этого момента должно активно использоваться в речи учащихся. В результате изучения материала учащиеся должны уметь осуществлять пере­вод задач на язык формул, выполнять числовые подстановки в формулы, выражать переменные из формул. Особое внимание уде­ляется формированию представлений о прямой и обратной про­порциональной зависимостях и формулам, выражающим такие за­висимости между величинами. Формируется представление о пропорции и решении задач с помощью пропорций.

    1. Введение в алгебру (12 ч.)

    Буквенные выражения. Числовые подстановки в буквенное выражение. Преобразование буквенных выражений: раскрытие скобок, приведение подобных слагаемых.

    Основная цель - сформировать у учащихся первоначальные представления о языке алгебры, о буквенном исчислении; научить выполнять элементарные базовые преобразования бук­венных выражений.

    В 7 классе начинается систематическое изучение алгебраиче­ского материала. Введение буквенных равенств мотивируется опытом работы с числами, осознанием и обобщением приемов вычислений. На этом этапе раскрывается смысл свойств арифметических дейст­вий как законов преобразований буквенных выражений, форми­руются умения упрощать несложные произведения, раскрывать скобки, приводить подобные слагаемые.

    1. Уравнения (12 ч.)

    Алгебраический способ решения задач. Корни уравнения. Решение уравнений. Решение задач с помощью уравнений

    Основная цель - познакомить учащихся с понятиями «уравнение» и «корень уравнения», с некоторыми свойствами уравне­ний; сформировать умение решать несложные линейные уравне­ния с одной переменной; начать обучение решению текстовых за­дач алгебраическим способом.

    Рассматриваются некоторые приемы составления уравнения по условию задачи, возможность составления разных уравнений по одному и тому же условию, формируется умение выбирать наи­более предпочтительный для конкретной задачи вариант урав­нения. Переход к алгебраическому методу решения задач одно­временно служит мотивом для обучения способу решения уравнений. Основное внимание в этой теме уделяется решению линейных уравнений с одной переменной, показываются некото­рые технические приемы решения.

    1. Координаты и графики (8 ч.)

    Числовые промежутки. Расстояние между точками на коор­динатной прямой. Множества точек на координатной плоскости. Графики зависимостей у = х, у = х2, у = х3, у = | х |. Графики реальных зависимостей.

    Основная цель - развить умения, связанные с работой на координатной прямой и на координатной плоскости; познакомить с графиками зависимостей у = х, у = -х, у = х2, у = х3, у = | х |; сформировать первоначальные навыки интерпретации графиков реальных зависимостей.

    При изучении курса математики в 5 - 6 классах учащиеся по­знакомились с идеей координат. В этой теме рассматриваются различные множества точек на координат­ной прямой и на координатной плоскости, при этом формируется умение переходить от алгебраического описания множества точек к геометрическому изображению и наоборот. Рассматривается формула расстояния между точками координатной прямой. При изучении темы учащиеся знакомятся с графиками таких зависимостей, как у = х, у = - х,

    у = х2, у = х3, у = | х |. В резуль­тате учащиеся должны уметь достаточно быстро строить каждый из перечисленных графиков, указывая его характерные точ­ки. Сформированные умения могут стать основой для выполне­ния заданий на построение графиков кусочно-заданных зависи­мостей. Специальное внимание в данной теме уделяется работе с гра­фиками реальных зависимостей - температуры, движения и пр., причем акцент должен быть сделан на считывание с графика нужной информации. Важно, чтобы учащиеся получили пред­ставление об использовании графиков в самых различных облас­тях человеческой деятельности.

    1. Свойства степени с натуральным показателем (8 ч.)

    Произведение и частное степеней с натуральными показателями. Степень степени, произведения и дроби. Решение комбинаторных задач, формула перестановок.

    Основная цель - выработать умение выполнять действия над степенями с натуральными показателями; научить приме­нять правило умножения при решении комбинаторных задач.

    Учащимся уже знакомо определение степени с натуральным показателем, и у них есть некоторый опыт преобразования выра­жений, содержащих степени, на основе определения. Основное содержание данной темы состоит в рассмотрении свойств степени и выполнении действий со степенями. Сформированные умения могут найти применение при выполнении заданий на сокращение дробей, числители и знаменатели которых - произведения, со­держащие степени. В этой же теме продолжается обучение решению комбинатор­ных задач, в частности задач, решаемых на основе комбинаторно­го правила умножения. Дается специальное название одному из видов комбинаций - перестановки и рассматривается формула для вычисления числа перестановок. Это первая комбинаторная формула, сообщаемая учащимся.

    1. Многочлены (14 ч.)

    Одночлены и многочлены. Сложение, вычитание и умноже­ние многочленов. Формулы сокращенного умножения: квадрат суммы и квадрат разности, куб суммы и куб разности. Решение задач с помощью уравнений

    Основная цель - выработать умения выполнять дейст­вия с многочленами, применять формулы квадрата суммы и квадрата разности, куба суммы и куба разности для преобразова­ния квадрата и куба двучлена в многочлен.

    Изучение данной темы опирается на знания, полученные при изучении темы «Введение в алгебру». Используются свойства ал­гебраических сумм и произведений, правила раскрытия скобок и приведения подобных слагаемых. Терминами «одночлен» и «мно­гочлен» называются такие алгебраические выражения, с которы­ми учащиеся, по сути, уже имели дело. Основное внимание в данной теме уделяется рассмотрению алгоритмов выполнения действий над многочленами - сложе­ния, вычитания, умножения, при этом подчеркивается следую­щий теоретический факт: сумму, разность и произведение много­членов всегда можно представить в виде многочлена. В ходе практической деятельности учащиеся должны выполнить зада­ния комплексного характера, предусматривающие выполнение нескольких действий. Однако следует иметь в виду, что на этом этапе основным результатом является овладение собственно алго­ритмами действий над многочленами, а преобразованиям целых выражений будет уделено внимание еще и в 8 классе. Овладение действиями с многочленами сопровождается развитием умений решать линейные уравнения и применять алгебраический метод решения текстовых задач.

    1. Разложение многочленов на множители (15 ч.)

    Вынесение общего множителя за скобки. Способ группировки. Формула разности квадратов, формулы суммы кубов и разности кубов. Разложение на множители с применением нескольких способов. Решение уравнений с помощью разложения на множители.

    Основная цель - выработать умение выполнять разложе­ние на множители с помощью вынесения общего множителя за скобки и способом группировки, а также с применением формул сокращенного умножения.

    Вопрос о разложении многочленов на множители дается в ви­де отдельной темы, в которую отнесено также знакомство с формулами разности квадратов, разности и суммы кубов. Рас­сматриваются некоторые специальные приемы преобразования многочленов, после которых становится возможным применение способа группировки: разбиение какого-то члена многочлена на два слагаемых и более, а также прием «прибавить - вычесть». Следует продолжить формиро­вание умений сокращать дроби и рассмотреть приемы решения уравнений на основе равенства произведения нулю.

    1. Частота и вероятность (4ч.)

    Относительная частота случайно­го события. Вероятность случайного события

    Основная цель - показать возможность оценивания ве­роятности случайного события по его частоте.

    Особенностью предлагаемой методики является статистический подход к понятию вероятности: вероятность случайного события оценивается по его частоте при проведении большой се­рии экспериментов. Процесс стабилиза­ции частоты полезно иллюстрировать с помощью графика.

    10. Повторение (5 ч.)

    VIII класс

    1. Алгебраические дроби (23ч.)

    Алгебраическая дробь. Основное свойство алгебраической дро­би. Сокращение дробей. Сложение, вычитание, умножение и деление алгебраических дробей. Степень с целым показателем и ее свойства. Выделение множителя - степени десяти - в записи числа.

    Основная цель - сформировать умения выполнять дейст­вия с алгебраическими дробями, действия со степенями с целым показателем; развить навыки решения текстовых задач алгебраи­ческим методом.

    Эта тема является естественным продолжением и развитием начатого в 7 классе систематического изучения преобразований рациональных выражений. Изложение целесообразно строить, как и при изучении преобразований буквенных выражений в 7 классе, с опорой на опыт работы с числами. Главным результа­том обучения должно явиться владение алгоритмами сложения, вычитания, умножения и деления алгебраических дробей. Коли­чество и уровень сложности заданий, требующих выполнения не­скольких действий, определяются самим учителем в зависимости от возможностей класса. При этом необходимо иметь в виду, что в соответствии с общей идеей развития содержания курса по спи­рали в 9 классе предусмотрен еще один «проход» преобразования рациональных выражений.

    Самостоятельный фрагмент темы посвящен изучению степени с целым показателем. Мотивом для введения этого понятия служит целесообразность представления больших и малых чисел в, так называемом стандартном виде. С этим способом записи чисел учащиеся уже встречались на уроках физики.

    Завершается тема фрагментом, посвященным решению урав­нений и текстовых задач. По сравнению с курсом 7 класса здесь предлагаются более сложные в техническом отношении уравне­ния (хотя, как и в 7 классе, это по-прежнему целые уравнения, но содержащие дробные коэффициенты).

    2. Квадратные корни (17 ч.).

    Квадратный корень из числа. Понятие об иррациональном числе. Десятичные приближения квадратного корня. Свойства арифметического квадратного корня и их применение к пре­образованию выражений. Корень третьей степени, понятие о кор­не п-й степени из числа. Нахождение приближенного значения корня с помощью калькулятора. Графики зависимостей и .

    Основная цель - научить преобразованиям выражений, со­держащих квадратные корни; на примере квадратного и кубиче­ского корней сформировать представления о корне n-й степени.

    Понятие квадратного корня возникает в курсе при обсужде­нии двух задач геометрической (о нахождении стороны квад­рата по его площади) и алгебраической (о числе корней уравне­ния вида х2 = а, где а - произвольное число). При рассмотрении первой из них даются начальные представления об иррациональ­ных числах.

    В содержание темы целесообразно включить нетрадиционный для алгебры вопрос - теорему Пифагора. Это позволит проде­монстрировать естественное применение квадратных корней для нахождения длин отрезков, построения отрезков с иррациональ­ными длинами, точек с иррациональными координатами.

    Целесообразно также активно использовать калькулятор, причем не только в качестве инструмента для извлечения кор­ней, но и как средство, позволяющее проиллюстрировать некото­рые теоретические идеи.

    В ходе изучения данной темы предусматривается знакомство с понятием кубического корня, одновременно формируются на­чальные представления о корне n-й степени. Рассматриваются графики зависимостей и .

    3. Квадратные уравнения (20 ч.).

    Квадратное уравнение. Формулы корней квадратного уравнения. Решение текстовых задач составлением квадратных уравнений. Теорема Виета. Разложение на множители квадратного трехчлена.

    Основная цель - научить решать квадратные уравнения и использовать их при решении текстовых задач.

    В тему включен весь материал, традиционно относящийся к этому разделу курса. В то же время предлагаются и некоторые существенные изменения: рассмотрение теоремы Виета связыва­ется с задачей разложения квадратного трехчлена на множители; в систему упражнений должны постоянно включаться задания на решение уравнений высших степеней; следует активно использо­вать метод подстановки.

    Большое место должно быть отведено решению текстовых за­дач, при этом рассматриваются некоторые особенности математи­ческих моделей, описывающих реальные ситуации.

    В связи с рассмотрением вопроса о разложении на множители квадратного трехчлена появляется возможность для дальнейшего развития линии преобразований алгебраических выражений.

    4. Системы уравнений (18 ч.).

    Уравнение с двумя переменными. Линейное уравнение с дву­мя переменными и его график. Примеры решения уравнений в целых числах. Система уравнений; решение систем двух линей­ных уравнений с двумя переменными, графическая интерпрета­ция. Примеры решения нелинейных систем. Решение текстовых задач составлением систем уравнений. Уравнение с несколькими переменными.

    Основная цель - ввести понятия уравнения с двумя пе­ременными, графика уравнения, системы уравнений; обучить ре­шению систем линейных уравнений с двумя переменными, а так­же использованию приема составления систем уравнений при решении текстовых задач.

    Основное содержание данной темы курса связано с рассмо­трением линейного уравнения и решением систем линейных уравнений. В то же время приводятся примеры и нелинейных уравнений, рассматриваются их графики, решаются системы, в которых одно уравнение не является линейным.

    Особенностью изложения является акцентирование внимания на блоке вопросов, по сути относящихся к аналитической геомет­рии. Тема начинается с вопроса о прямых на координатной плос­кости: рассматривается уравнение прямой в различных формах, специальное внимание уделяется уравнению вида , фор­мулируется условие параллельности прямых, а в качестве необя­зательного материала может быть рассмотрено условие перпенди­кулярности прямых. Сформированный аналитический аппарат применяется к решению задач геометрического содержания (на­пример, составление уравнения прямой, проходящей через две данные точки, прямой, параллельной данной и проходящей через данную точку, и пр.).

    Продолжается решение текстовых задач алгебраическим ме­тодом. Теперь математической моделью рассматриваемой ситуа­ции является система уравнений, при этом в явном виде форму­лируется следующая мысль: при переводе текстовой задачи на математический язык удобно вводить столько переменных, сколько неизвестных содержится в условии.

    5. Функции (14 ч.).

    Функция. Область определения и область значений функции. График функции. Возрастание и убывание функции, сохранение знака на промежутке, нули функции. Функции и их графики. Примеры графических зависимостей, отражающих реальные процессы.

    Основная цель - познакомить учащихся с понятием функции, расширить математический язык введением функциональной терминологии и символики; рассмотреть свойства и гра­фики конкретных числовых функций: линейной функции и функции ; показать значимость функционального аппарата для моделирования реальных ситуаций, научить в несложных случаях применять полученные знания для решения прикладных и практических задач.

    Материал данной темы опирается на умения, полученные в ре­зультате работы с графиками реальных зависимостей между величинами. Акцент делается не столько на определение поня­тия функции и связанных с ним понятий, сколько на введение нового языка, новой терминологии и символики. При этом но­вый язык постоянно сопоставляется с уже освоенным: внимание обращается на умение переформулировать задачу или вопрос, перевести их с языка графиков на язык функций либо уравнений и пр.

    Особенностью данной темы является прикладная направлен­ность учебного материала. Основное внимание уделяется гра­фикам реальных зависимостей, моделированию разнообразных реальных ситуаций, формированию представления о скоро­сти роста или убывания функции. При изучении линейной функ­ции следует явно сформулировать мысль о том, что линейной функцией описываются процессы, протекающие с постоянной скоростью, познакомить учащихся с идеей линейной аппрокси­мации.

    6. Вероятность и статистика (6 ч.).

    Статистические характеристики ряда данных, медиана, сред­нее арифметическое, размах. Таблица частот. Вероятность равновозможных событий. Классическая формула вычисления ве­роятности события и условия ее применения. Представление о геометрической вероятности.

    Основная цель - сформировать представление о возмож­ностях описания и обработки данных с помощью различных средних; познакомить учащихся с вычислениями вероятности случайного события с помощью классической формулы и из гео­метрических соображений.

    Материал данной темы знакомит с ситуациями, требующими вы­числения средних для адекватного описания ряда данных. Основное внимание уделяется целесообразности использования моды, медиа­ны или среднего арифметического в зависимости от ситуации.

    В предыдущих классах был рассмотрен статистический под­ход к понятию вероятности, на основе которого вводится гипоте­за о равновероятности событий, позволяющая в ситуации с равновозможными исходами применять классическую формулу вычисления вероятности события. Кроме того, рассматривается геометрический подход к понятию вероятности, позволяющий в некоторых ситуациях с бесконечным количеством исходов вы­числять вероятность наступления события как отношения площадей фигур.

    7. Повторение (4 ч.)

    IX класс

    1. Неравенства (19 ч.).

    Действительные числа как бесконечные десятичные дроби. Числовые неравенства и их свойства. Доказательство числовых и алгебраических неравенств. Линейные неравенства с одной пере­менной и их системы. Точность приближения, относительная точность.

    Основная цель - познакомить учащихся со свойствами числовых неравенств и их применением к решению задач (срав­нение и оценка значений выражений, доказательство неравенств и др.); выработать умение решать линейные неравенства с одной переменной и их системы.

    Изучение темы начинается с обобщения и систематизации знаний о действительных числах, повторения известных уча­щимся терминов: натуральные, целые, рациональные, действи­тельные числа - и рассмотрения отношений между соответ­ствующими числовыми множествами. При этом бесконечная десятичная дробь не является исходным понятием для определе­ния действительного числа, а рассматривается как его «универ­сальное имя». Вопрос о периодических и непериодических дро­бях может быть отнесен к необязательному материалу.

    Свойства числовых неравенств иллюстрируются геометри­чески и подтверждаются числовыми примерами. Рассмотрение вопроса о решении линейных неравенств с одной переменной со­провождается введением понятий равносильных уравнений и не­равенств, формулируются свойства равносильности уравнений и неравенств. Приобретенные учащимися умения получают разви­тие при решении систем линейных неравенств с одной перемен­ной. Рассматривается также вопрос о доказательстве неравенств. Учащиеся знакомятся с некоторыми приемами доказательства неравенств; система упражнений содержит значительное число заданий на применение аппарата неравенств.

    2. Квадратичная функция (20 ч.).

    Функция и ее график. Свойства квадратичной функции: возрастание и убывание, сохранение знака на проме­жутке, наибольшее (наименьшее) значение. Решение неравенств второй степени с одной переменной.

    Основная цель — познакомить учащихся с квадратичной функцией как с математической моделью, описывающей многие зависимости между реальными величинами; научить строить гра­фик квадратичной функции и читать по графику ее свойства; сформировать умение использовать графические представления для решения квадратных неравенств.

    Особенность принятого подхода заключается в том, что изуче­ние темы начинается с общего знакомства с функцией ; рассматриваются готовые графики квадратичных функций и анализируются их особенности (наличие оси симмет­рии, вершины, направление ветвей, расположение по отношению к оси х), при этом активизируются общие сведения о функциях, известные учащимся из курса 8 класса; учащиеся учатся строить параболу по точкам с опорой на ее симметрию. Далее следует бо­лее детальное изучение свойств квадратичной функции, особенно­стей ее графика и приемов его построения. В связи с этим может рассматриваться перенос вдоль осей координат произвольных гра­фиков. Центральным моментом темы является доказательство то­го, что график любой квадратичной функции мо­жет быть получен с помощью сдвигов вдоль координатных осей параболы . Теперь учащиеся по коэффициентам квадратно­го трехчлена могут представить общий вид соответст­вующей параболы и вычислить координаты ее вершины.

    В системе упражнений значительное место должно отводить­ся задачам прикладного характера, которые решаются с опорой на графические представления. Завершается эта тема рассмотре­нием квадратных неравенств, прием решения которых основан на умении определять промежутки, где график функции располо­жен выше (ниже) оси абсцисс.

    3. Уравнения и системы уравнений (25 ч.).

    Рациональные выражения. Допустимые значения перемен­ных, входящих в алгебраические выражения. Тождество, доказа­тельство тождеств. Решение целых и дробных уравнений с одной переменной. Примеры решения нелинейных систем уравнений с двумя переменными. Решение текстовых задач. Графическая ин­терпретация решения уравнений и систем уравнений.

    Основная цель - систематизировать сведения о рацио­нальных выражениях и уравнениях; познакомить учащихся с не­которыми приемами решения уравнений высших степеней, обу­чить решению дробных уравнений, развить умение решать системы нелинейных уравнений с двумя переменными, а также текстовые задачи; познакомить с применением графиков для ис­следования и решения систем уравнений с двумя переменными и уравнений с одной переменной.

    В данной теме систематизируются, обобщаются и развивают­ся теоретические представления и практические умения учащих­ся, связанные с рациональными выражениями, уравнениями, системами уравнений. Уточняется известное из курса 7 класса понятие тождественного равенства двух рациональных выраже­ний; его содержание раскрывается с двух позиций - алгебраиче­ской и функциональной. Вводится понятие тождества, обсужда­ются приемы доказательства тождеств.

    Значительное место в теме отводится решению рациональных уравнений с одной переменной. Систематизируются и углубляют­ся знания учащихся о целых уравнениях, основное внимание уде­ляется решению уравнений третьей и четвертой степени уже зна­комыми учащимся приемами - разложением на множители и введением новой переменной. Здесь же учащиеся впервые встреча­ются с решением уравнений, содержащих переменную в знамена­теле дроби. Продолжается решение систем уравнений, в том числе рассматриваются системы, в которых одно уравнение первой, а другое - второй степени, и примеры более сложных систем.

    В заключение проводится графическое исследование уравне­ний с одной переменной. Вообще графическая интерпретация ал­гебраических выражений, уравнений и систем должна широко использоваться при изложении материала всей темы.

    4. Арифметическая и геометрическая прогрессии (17 ч.).
    Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы п членов арифметической и геометрической про­грессий. Простые и сложные проценты.

    Основная цель - расширить представления учащихся о числовых последовательностях; изучить свойства арифметиче­ской и геометрической прогрессий; развить умение решать зада­чи на проценты.

    В данной теме вводятся необходимые термины и символика, в результате чего создается содержательная основа для осознанного изучения числовых последовательностей, которые неоднократно встречались в предыдущих темах курса. Характерной ее особен­ностью должны являться широта и разнообразие практических иллюстраций, акцент на связь изучаемого материала с окружаю­щим миром. Введение понятий арифметической и геометриче­ской прогрессий следует осуществлять на основе рассмотрения примеров из реальной жизни. На конкретных примерах вводятся понятия простых и сложных процентов, которые позволяют рас­смотреть большое число практико-ориентированных задач.

    5. Статистические исследования. Комбинаторика (6 ч.).

    Генеральная совокупность и выборка. Ранжирование данных. Полигон частот. Интервальный ряд. Гистограмма. Выборочная дисперсия, среднее квадратичное отклонение. Комбинаторные задачи. Перестановки, размещения, сочетания.

    Основная цель — сформировать представление о стати­стических исследованиях, обработке данных и интерпретации ре­зультатов.

    В данной теме представлен завершающий фрагмент вероятно­стно-статистической линии курса. В ней рассматриваются до­ступные учащимся примеры комплексных статистических иссле­дований, в которых используются полученные ранее знания о случайных экспериментах, способах представления данных и статистических характеристиках. В ходе описания исследований вводятся некоторые новые статистические понятия, отражающие специфику данного исследования. Они позволяют понять как центральные тенденции ряда данных, так и меру вариации. Включение данного материала направлено прежде всего на фор­мирование умений понимать и интерпретировать статистические результаты, представляемые в средствах массовой информации.

    Предполагается не столько формальное заучивание новых терми­нов, сколько первоначальное знакомство с понятийным аппара­том этой области знаний, необходимой каждому современному человеку.

    6. Повторение (15 ч.).

    ПЕРЕЧЕНЬ ТЕМ КОНТРОЛЬНЫХ РАБОТ

    VII класс

    1. Дроби и проценты

    2. Прямая и обратная пропорциональность

    3. Введение в алгебру

    4. Уравнения

    5. Координаты и графики

    6. Свойства степени с натуральным показателем

    7. Действия с многочленами

    8. Формулы сокращённого умножения

    9. Разложение многочленов на множители

    10. Итоговый тест

    VIII класс

    1. Алгебраические дроби

    2. Квадратные корни

    3. Квадратные уравнения

    4. Системы уравнений

    5. Функции

    6. Вероятность и статистика

    7. Итоговый тест

    IX класс

    1. Неравенства

    2. Квадратичная функция

    3. Уравнения

    4. Системы уравнений

    5. Арифметическая и геометрическая прогрессии

    6. Итоговый тест

    ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ОБУЧАЮЩИХСЯ

    В результате изучения курса учащиеся должны:

    знать/понимать

    • существо понятия математического доказательства; приво­дить примеры доказательств;

    • существо понятия алгоритма; приводить примеры алгоритмов;

    • как используются математические формулы, уравнения и не­равенства; примеры их применения для решения математиче­ских и практических задач;

    • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

    • как потребности практики привели математическую науку к необходимости расширения понятия числа;

    • вероятностный характер многих закономерностей окружающе­го мира; примеры статистических закономерностей и выводов;

    • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утвержде­ний о них, важных для практики;

    • смысл идеализации, позволяющей решать задачи реальной
      действительности математическими методами, примеры оши­бок, возникающих при идеализации.

    Уметь

    • выполнять устно арифметические действия: сложение и вы­читание двузначных чисел и десятичных дробей с двумя зна­ками, умножение однозначных чисел, арифметические опера­ции с обыкновенными дробями с однозначным знаменателем и числителем;

    • переходить от одной формы записи чисел к другой, представ­лять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты - в ви­де дроби и дробь - в виде процентов; записывать большие и малые числа с использованием целых степеней десятки;

    • выполнять арифметические действия с рациональными числа­ми, сравнивать рациональные и действительные числа; нахо­дить в несложных случаях значения степеней с целыми показа­телями и корней; находить значения числовых выражений;

    • округлять целые числа и десятичные дроби, находить при­ближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;

    • пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные едини­цы через более мелкие и наоборот;

    • решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и про­центами;

    • составлять буквенные выражения и формулы по условиям за­дач; осуществлять в выражениях и формулах числовые под­становки и выполнять соответствующие вычисления, осуще­ствлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

    • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

    • применять свойства арифметических квадратных корней для
      вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

    • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;

    • решать линейные и квадратные неравенства с одной переменной и их системы;

    • решать текстовые задачи алгебраическим методом, интерпре­тировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

    • изображать числа точками на координатной прямой;

    • определять координаты точки плоскости, строить точки с за­данными координатами; изображать множество решений ли­нейного неравенства;

    • распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и сум­мы нескольких первых членов;

    • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

    • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

    • описывать свойства изученных функций, строить их графики;

    • проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использо­вать примеры для иллюстрации и контрпримеры для опровер­жения утверждений;

    • извлекать информацию, представленную в таблицах, на диа­граммах, графиках; составлять таблицы, строить диаграммы и графики;

    • решать комбинаторные задачи путем систематического перебора возможных вариантов и с использованием правила умножения;

    • вычислять средние значения результатов измерений;

    • находить частоту события, используя собственные наблюде­ния и готовые статистические данные;

    • находить вероятности случайных событий в простейших слу­чаях.

    использовать приобретенные знания и умения

    в практической деятельности и повседневной жизни для:

    • решения несложных практических расчетных задач, в том числе с использованием при необходимости справочных мате­риалов, калькулятора, компьютера;

    • устной прикидки и оценки результата вычислений; проверки результата вычисления, с использованием различных приемов;

    • интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений;

    • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

    • моделирования практических ситуаций и исследования по­строенных моделей с использованием аппарата алгебры;

    • описания зависимостей между физическими величинами со­ответствующими формулами при исследовании несложных практических ситуаций;

    • интерпретации графиков реальных зависимостей между вели­чинами;

    • выстраивания аргументации при доказательстве и в диалоге;

    • распознавания логически некорректных рассуждений;

    • записи математических утверждений, доказательств;

    • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;

    • решения практических задач в повседневной и профессио­нальной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;

    • решения учебных и практических задач, требующих система­тического перебора вариантов;

    • сравнения шансов наступления случайных событий, для оценки вероятности случайного события в практических си­туациях, сопоставления модели с реальной ситуацией; понимания статистических утверждений.

    КРИТЕРИИ И НОРМЫ ОЦЕНКИ ЗНАНИЙ ОБУЧАЮЩИХСЯ

    Единые нормы являются основой при оценке как контрольных, так и всех других письменных работ по математике. Применяя эти нормы, учитель должен индивидуально подходить к оценке каждой письменной работы учащегося, обращать внимание на качество выполнения работы в целом, а затем уже на количество ошибок и на их характер.

    Оценка письменной работы определяется с учётом прежде всего её общего математического уровня, оригинальности, последовательности, логичности её выполнения, а также числа ошибок и недочётов и качества оформления работы.

    Ошибка, повторяющаяся в одной работе несколько раз, рассматривается как одна ошибка.

    За орфографические ошибки, допущенные учениками, оценка не снижается; об орфографических ошибках доводится до сведения преподавателя русского языка. Однако ошибки в написании математических терминов, уже встречавшихся школьникам класса, должны учитываться как недочёты в работе.

    При оценке письменных работ по математике различают грубые ошибки, ошибки и недочёты.

    К грубым относятся ошибки в вычислениях, свидетельствующие о незнании таблицы сложения или таблицы умножения, связанные с незнанием алгоритма письменного сложения и вычитания умножения и деления на одно- или двузначное число и т.п., ошибки, свидетельствующие о незнании основных формул, правил и явном неумении их применять, о незнании приёмов решения задач, аналогичных ранее изученным.

    Примечание. Если грубая ошибка встречается в работе только в одном случае из нескольких аналогичных, то при оценке работы эта ошибка может быть приравнена к негрубой.

    Примерами негрубых ошибок являются: ошибки, связанные с недостаточно полным усвоением текущего учебного материала, не вполне точно сформулированный вопрос или пояснение при решении задачи, неточности при выполнении геометрических построений и т.п.

    Недочётами считаются нерациональные записи при вычислениях, нерациональные приёмы вычислений, преобразований и решений задач, небрежное выполнение чертежей и схем, отдельные погрешности в формулировке пояснения или ответа к задаче. К недочётам можно отнести и другие недостатки работы, вызванные недостаточным вниманием учащихся, например: неполное сокращение дробей или членов отношения; обращение смешанных чисел в неправильную дробь при сложении и вычитании; пропуск наименований; пропуск чисел в промежуточных записях; перестановка цифр при записи чисел; ошибки, допущенные при переписывании, и т.п.

    Оценка письменной работы по выполнению вычислительных заданий и алгебраических преобразований:

    Оценка «5» ставится за безукоризненное выполнение письменной работы, т.е.: а) если решение всех примеров верное; б) если все действия и преобразования выполнены правильно, без ошибок; все записи хода решения расположены последовательно, а также сделана проверка решения в тех случаях, когда это требуется.

    Оценка «4» ставится за работу, в которой допущена одна (негрубая) ошибка или два-три недочёта.

    Оценка «З» ставится в следующих случаях:

    а) если в работе имеется одна грубая ошибка и не более одной негрубой ошибки;

    б) при наличии одной грубой ошибки и одного - двух недочётов;

    в) при отсутствии грубых ошибок, но при наличии от двух до четырёх (негрубых) ошибок;

    г) при наличии двух негрубых ошибок и не более трёх недочётов;

    д) при отсутствии ошибок, но при наличии четырёх и более недочётов;

    е) если наверно выполнено не более половины объёма всей работы.

    Оценка «2» ставится, когда число ошибок превосходит норму, при которой может быть выставлена положительная оценка, или если правильно выполнено менее половины всей работы.

    Примечание. Оценка «5» может быть поставлена, несмотря на наличие одного-двух недочётов, если ученик дал оригинальное решение заданий, свидетельствующее о его хорошем математическом развитии.

    Оценка письменной работы на решение текстовых задач:

    Оценка «5» ставится в том случае, когда задача решена правильно: ход решения задачи верен, все действия и преобразования выполнены верно и рационально; в задаче, решаемой с вопросами или пояснениями к действиям, даны точные и правильные формулировки; в задаче, решаемой с помощью уравнения, даны необходимые пояснения; записи правильны, расположены последовательно, дан верный и исчерпывающий ответ на вопросы задачи; сделана проверка решения (в тех случаях, когда это требуется).

    Оценка «4» ставится в том случае, если при правильном ходе решения задачи допущена одна негрубая ошибка или два-три недочёта.


    Оценка «З» ставится в том случае, если ход решения правилен, но допущены:

    а) одна грубая ошибка и не более одной негрубой;

    б) одна грубая ошибка и не более двух недочётов;

    в) три-четыре негрубые ошибки при отсутствии недочётов;

    г) допущено не более двух негрубых ошибок и трёх недочётов;

    д) более трёх недочётов при отсутствии ошибок.

    Оценка «2» ставится в том случае, когда число ошибок превосходит норму, при которой может быть выставлена положительная оценка.

    Примечания:

    1. Оценка «5» может быть поставлена несмотря на наличие описки или недочёта, если ученик дал оригинальное решение, свидетельствующее о его хорошем математическом развитии.

    2. Положительная оценка «З» может быть выставлена ученику, выполнившему работу не полностью, если он безошибочно выполнил более половины объёма всей работы

    Оценка комбинированных письменных работ по математике:

    Письменная работа по математике, подлежащая оцениванию, может состоять из задач и примеров (комбинированная работа). В таком случае преподаватель сначала даёт предварительную оценку каждой части работы, а затем общую, руководствуясь следующим:

    а) если обе части работы оценены одинаково, то эта оценка должна быть общей для всей работы в целом;

    б) если оценки частей разнятся на один балл, например, даны оценки «5» и «4» или «4» и «З» и т.п., то за работу в целом, как правило, ставится балл, оценивающий основную часть работы;

    в) если одна часть работы оценена баллом «5», а другая - баллом «З», то преподаватель может оценить такую работу в целом баллом «4» при условии, что оценка «5» поставлена за основную часть работы;

    г) если одна из частей работы оценена баллом «5» или «4», а другая - баллом «2» или «I», то преподаватель может оценить всю работу баллом «З» при условии, что высшая из двух данных оценок поставлена за основную часть работы.

    Примечание. Основной считается та часть работы, которая включает больший по объёму или наиболее важный по значению материал по изучаемым темам программы.



    Оценка текущих письменных работ:

    При оценке повседневных обучающих работ по математике учитель руководствуется указанными нормами оценок, но учитывает степень самостоятельности выполнения работ учащимися.

    Обучающие письменные работы, выполненные учащимися вполне самостоятельно с применением ранее изученных и хорошо закреплённых знаний, оцениваются так же, как и контрольные работы.

    Обучающие письменные работы, выполненные вполне самостоятельно, на только что изученные и недостаточно закреплённые правила, могут оцениваться менее строго.

    Письменные работы, выполненные в классе с предварительным разбором их под руководством учителя, оцениваются более строго.

    Домашние письменные работы оцениваются так же, как классная работа обучающего характера.

    Промежуточная аттестация: итоговая оценка за четверть и за год:

    В соответствии с особенностями математики как учебного предмета оценки за письменные работы имеют большее значение, чем оценки за устные ответы и другие виды работ.

    Поэтому при выведении итоговой оценки за четверть «среднеарифметический подход» недопустим - такая оценка не отражает достаточно объективно уровень подготовки и математического развития ученика. Итоговую оценку определяют, в первую очередь, оценки за контрольные работы, затем - принимаются во внимание оценки за другие письменные и практические работы, и лишь в последнюю очередь - все прочие оценки (за устные ответы, устный счёт и т.д.). При этом учитель должен учитывать и фактический уровень знаний и умений ученика на конец четверти.

    Итоговая оценка за год выставляется на основании четвертных оценок, но также с обязательным учётом фактического уровня знаний ученика на конец учебного года.

    СПИСОК ЛИТЕРАТУРЫ ДЛЯ ОБУЧАЮЩИХСЯ

    1. Г.В.Дорофеев, С.Б.Суворова, Е.А.Бунимович и др. Алгебра: учебник для 7 класса основной школы. - М.: Просвещение, 2008.;

    2. Г.В.Дорофеев, С.Б.Суворова, Е.А.Бунимович и др. Алгебра: учебник для 8 класса основной школы. - М.: Просвещение, 2008;

    3. Г.В.Дорофеев, С.Б.Суворова, Е.А.Бунимович и др. Алгебра: учебник для 9 класса основной школы. - М.: Просвещение, 2008 г.

    4. С.С.Минаева, Л.О.Рослова. Алгебра: Рабочая тетрадь. 7 класс. – М.: Просвещение, 2009.;

    5. Л.П.Евстафьева, А.П.Карп. Алгебра. Дидактические материалы. 7 класс. – М.: Просвещение, 2009.;

    6. Л.П.Евстафьева, А.П.Карп. Алгебра. Дидактические материалы. 8 класс. – М.: Просвещение, 2010.;

    7. Л.П.Евстафьева, А.П.Карп. Алгебра. Дидактические материалы. 9 класс. – М.: Просвещение, 2010.;

    8. Л.В.Кузнецова, С.С. Минаева, Л.О.Рослова. Алгебра. Тематические тесты. 7 класс. – М.: Просвещение, 2010.;

    9. Л.В.Кузнецова, С.С. Минаева, Л.О.Рослова. Алгебра. Тематические тесты. 8 класс. – М.: Просвещение, 2010.;

    10. Л.В.Кузнецова, С.С. Минаева, Л.О.Рослова. Алгебра. Тематические тесты. 9 класс. – М.: Просвещение, 2010.;





    EdemskayaIG_matematika.rar Скачать
    Обсуждение материала
    Марина Гилярова
    27.02.2012 22:57
    Рабочая программа содержит пояснительную записку, перечень разделов (тем) программы, содержание учебного материала по классам и темам, перечень тем контрольных работ, требования к уровню подготовки обучающихся, критерии и нормы оценки знаний обучающихся, список литературы для обучающихся. Информация хорошо структурирована, но нет логотипа на первой странице документа, хотя автор знает о его необходимости размещения.
    Имеется несоответствие распределения часов в пояснительной записке и перечне разделов (тем) программы. Первоначально заявлено, цитирую «в 7 классе(13ч.) на тему: Статистические характеристики. Наглядное представление статистической информации (представление графиков). Решение комбинаторных задач путём систематического перебора возможных вариантов, а также с использованием правила умножения. Перестановки. Относительная частота случайного события. Оценка вероятности случайного события по его частоте.» Далее в таблице в планировании 7-го класса  на тему «Частота и вероятность» отведено 4ч.
    По моему мнению, рабочая программа должна быть составлена таким образом, чтобы давать представление о содержании каждого урока (знать, уметь, деятельность, домашнее задание). Для данной рабочей программы требуется доработка.
    Для добавления отзыва, пожалуйста, войдите или зарегистрируйтесь.
    Образовательные вебинары
    Подписаться на новые Расписание вебинаров